Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Ontogeny of Na/H antiporter activity in rabbit renal brush border membrane vesicles.
J C Beck, … , M S Lipkowitz, R G Abramson
J C Beck, … , M S Lipkowitz, R G Abramson
Published June 1, 1991
Citation Information: J Clin Invest. 1991;87(6):2067-2076. https://doi.org/10.1172/JCI115237.
View: Text | PDF
Research Article

Ontogeny of Na/H antiporter activity in rabbit renal brush border membrane vesicles.

  • Text
  • PDF
Abstract

The development of the Na/H antiporter was studied in renal brush border membrane vesicles (BBMV) from fetal and adult rabbits using isotopic and fluorescent techniques. The kinetics of the antiporter studied by 22Na+ uptake revealed that the Vmax was only 25% of that in the adult; however, the Km's for Na+ were not significantly different. These data were confirmed by a fluorescent assay using the pH-sensitive probe, acridine orange: the Vmax was significantly lower in the fetal BBMV. Conductive Na+ movement was estimated from amiloride-insensitive 22Na+ uptake and the rate of alkalinization induced by K+, an ion whose relative conductance was found to be similar to that of Na+. Although relative Na+ conductance was significantly greater in fetal BBMV, the lower Vmax in fetal vesicles could not be ascribed to this factor. Maternal administration of betamethasone (50 micrograms/kg intramuscularly) for 2 d before delivery significantly increased the Vmax of the antiporter to levels observed in the adult; Km was unaffected. Na/K ATPase activity increased fourfold after betamethasone, but the specific activities of four brush border marker enzymes and the kinetics of Na(+)-glucose cotransport were unchanged. These data indicate that there is a developmental increase in brush border Na/H exchange which is the result of an increase in the number and/or the turnover number of the carriers. Further, these data suggest that the postnatal increase in antiporter activity may be related to the surge in glucocorticoid concentration that occurs perinatally.

Authors

J C Beck, M S Lipkowitz, R G Abramson

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts