Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Native and recombinant human hepatocyte growth factors are highly potent promoters of DNA synthesis in both human and rat hepatocytes.
A J Strain, … , Y Daikuhara, P McMaster
A J Strain, … , Y Daikuhara, P McMaster
Published May 1, 1991
Citation Information: J Clin Invest. 1991;87(5):1853-1857. https://doi.org/10.1172/JCI115207.
View: Text | PDF
Research Article

Native and recombinant human hepatocyte growth factors are highly potent promoters of DNA synthesis in both human and rat hepatocytes.

  • Text
  • PDF
Abstract

Human hepatocyte growth factor (hHGF) has recently been expressed as a recombinant polypeptide from Chinese hampster ovary cell transfectants. Using a primary rat hepatocyte bioassay, we have tested the biological activity of recombinant hHGF and compared it with native hHGF. Dose-response curves were almost identical, with half-maximal stimulation of DNA synthesis at 1-2 ng/ml (equivalent to approximately 10 pM). S-phase labeling index was similarly enhanced and numerous mitotic cells were observed. Recombinant and native hHGF also stimulated DNA synthesis and S-phase labeling index in primary adult human hepatocytes. Human cells were more responsive than rat hepatocytes, with recombinant hHGF slightly more potent than native hHGF (half-maximal stimulation 0.3 and 0.6 ng/ml, respectively). Since HGF levels rise in patients with fulminant hepatic failure and in animals after partial hepatectomy or administration of hepatotoxins, situations where liver regeneration occurs, HGF is suggested to play a key role in regulation of hepatic growth. The high potency of the factor on human hepatocytes reinforces its candidacy as a critical mitogen in human liver growth. The availability of a recombinant hHGF opens the way for in vivo experimental studies and to the possibility of using hHGF as a clinical therapeutic agent, either alone or in combination with other factors.

Authors

A J Strain, T Ismail, H Tsubouchi, N Arakaki, T Hishida, N Kitamura, Y Daikuhara, P McMaster

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 203 12
PDF 74 13
Figure 0 1
Scanned page 203 2
Citation downloads 77 0
Totals 557 28
Total Views 585
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts