Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115204

Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon.

S D Shapiro, S K Endicott, M A Province, J A Pierce, and E J Campbell

Department of Medicine, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri.

Find articles by Shapiro, S. in: JCI | PubMed | Google Scholar

Department of Medicine, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri.

Find articles by Endicott, S. in: JCI | PubMed | Google Scholar

Department of Medicine, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri.

Find articles by Province, M. in: JCI | PubMed | Google Scholar

Department of Medicine, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri.

Find articles by Pierce, J. in: JCI | PubMed | Google Scholar

Department of Medicine, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri.

Find articles by Campbell, E. in: JCI | PubMed | Google Scholar

Published May 1, 1991 - More info

Published in Volume 87, Issue 5 on May 1, 1991
J Clin Invest. 1991;87(5):1828–1834. https://doi.org/10.1172/JCI115204.
© 1991 The American Society for Clinical Investigation
Published May 1, 1991 - Version history
View PDF
Abstract

Normal structure and function of the lung parenchyma depend upon elastic fibers. Amorphous elastin is biochemically stable in vitro, and may provide a metabolically stable structural framework for the lung parenchyma. To test the metabolic stability of elastin in the normal human lung parenchyma, we have (a) estimated the time elapsed since the synthesis of the protein through measurement of aspartic acid racemization and (b) modeled the elastin turnover through measurement of the prevalence of nuclear weapons-related 14C. Elastin purified by a new technique from normal lung parenchyma was hydrolyzed; then the prevalences of D-aspartate and 14C were measured by gas chromatography and accelerator-mass spectrometry, respectively. D-aspartate increased linearly with age; Kasp (1.76 x 10(-3) yr(-1) was similar to that previously found for extraordinarily stable human tissues, indicating that the age of lung parenchymal elastin corresponded with the age of the subject. Radiocarbon prevalence data also were consistent with extraordinary metabolic stability of elastin; the calculated mean carbon residence time in elastin was 74 yr (95% confidence limits, 40-174 yr). These results indicate that airspace enlargement characteristic of "aging lung" is not associated with appreciable new synthesis of lung parenchymal elastin. The present study provides the first tissue-specific evaluation of turnover of an extracellular matrix component in humans and underscores the potential importance of elastin for maintenance of normal lung structure. Most importantly, the present work provides a foundation for strategies to directly evaluate extracellular matrix injury and repair in diseases of lung (especially pulmonary emphysema), vascular tissue, and skin.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1828
page 1828
icon of scanned page 1829
page 1829
icon of scanned page 1830
page 1830
icon of scanned page 1831
page 1831
icon of scanned page 1832
page 1832
icon of scanned page 1833
page 1833
icon of scanned page 1834
page 1834
Version history
  • Version 1 (May 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts