Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115183

Barrier function regulates epidermal DNA synthesis.

E Proksch, K R Feingold, M Q Man, and P M Elias

Dermatology Service, Veterans Administration Medical Center, San Francisco, California 94121.

Find articles by Proksch, E. in: PubMed | Google Scholar

Dermatology Service, Veterans Administration Medical Center, San Francisco, California 94121.

Find articles by Feingold, K. in: PubMed | Google Scholar

Dermatology Service, Veterans Administration Medical Center, San Francisco, California 94121.

Find articles by Man, M. in: PubMed | Google Scholar

Dermatology Service, Veterans Administration Medical Center, San Francisco, California 94121.

Find articles by Elias, P. in: PubMed | Google Scholar

Published May 1, 1991 - More info

Published in Volume 87, Issue 5 on May 1, 1991
J Clin Invest. 1991;87(5):1668–1673. https://doi.org/10.1172/JCI115183.
© 1991 The American Society for Clinical Investigation
Published May 1, 1991 - Version history
View PDF
Abstract

We examined the possibility that the cutaneous permeability barrier regulates epidermal DNA synthesis in two acute and two chronic models of barrier perturbation. In animals treated topically with acetone, DNA synthesis is increased 102%, in tape-stripped animals 127%, in essential fatty acid deficient animals 50%, and in animals chronically treated with topical lovastatin 64%. This linkage between disturbances in barrier function and increased DNA synthesis is further supported by specific and correlative observations: (a) in these disparate models, artificial replacement of the barrier with a water-impermeable membrane inhibits the expected increase in DNA synthesis; (b) the extent of the burst in DNA synthesis is proportional to the degree of barrier abrogation; (c) the inhibition of DNA synthesis by membranes is directly related to the degree of permeability of these occlusive membranes, i.e., the more impermeable the greater the degree of inhibition; (d) topical treatment with lipids that restore barrier function corrects the increase in DNA synthesis; and (e) barrier abrogation with acetone produces an increase in epidermal DNA synthesis without altering bulk protein synthetic rates in contrast to events known to follow injury or cell replacement. Autoradiographic studies show that the increase in DNA synthesis after acetone treatment is limited to the epidermal basal layer. This constellation of findings strongly suggests that cutaneous barrier function is one factor that regulates epidermal DNA synthesis.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1668
page 1668
icon of scanned page 1669
page 1669
icon of scanned page 1670
page 1670
icon of scanned page 1671
page 1671
icon of scanned page 1672
page 1672
icon of scanned page 1673
page 1673
Version history
  • Version 1 (May 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts