Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115172

In vitro killing of oral Capnocytophaga by granule fractions of human neutrophils is associated with cathepsin G activity.

K T Miyasaki and A L Bodeau

Section of Oral Biology, University of California, School of Dentistry, Los Angeles 90024.

Find articles by Miyasaki, K. in: PubMed | Google Scholar

Section of Oral Biology, University of California, School of Dentistry, Los Angeles 90024.

Find articles by Bodeau, A. in: PubMed | Google Scholar

Published May 1, 1991 - More info

Published in Volume 87, Issue 5 on May 1, 1991
J Clin Invest. 1991;87(5):1585–1593. https://doi.org/10.1172/JCI115172.
© 1991 The American Society for Clinical Investigation
Published May 1, 1991 - Version history
View PDF
Abstract

The Capnocytophaga are inhabitants of the hypoxic human gingival crevice that are normally prevented by neutrophils from causing periodontal and systemic infection. To identify potential nonoxidative bactericidal mechanisms against Capnocytophaga within human neutrophils, gel filtration chromatography was used to fractionate neutrophil granule extracts. Seven granule fractions, designated A through G, were obtained. The Capnocytophaga were most sensitive to killing by fraction D. Fraction D exhibited substantial bactericidal activity under aerobic and anaerobic conditions. The bactericidal activity associated with ion-exchange subfractions D8-D11, which contained primarily cathepsin G as assessed by enzymatic activity, amino acid composition, and NH2-terminal sequence. Heat-inactivation, diisopropylfluorophosphate, PMSF, and N-benzyloxycarbonylglycylleucylphenylalanyl-chloromethyl ketone inhibited bactericidal activity against Capnocytophaga sputigena but not Escherichia coli. We conclude that (a) human neutrophil cathepsin G is an important antimicrobial system against the Capnocytophaga, (b) the bactericidal activity of cathepsin G against Capnocytophaga is oxygen independent, and (c) an intact enzyme active site is involved in the killing of C. sputigena but not E. coli. We suggest that human neutrophil cathepsin G is an important antimicrobial system against certain oral bacteria and that cathepsin G kills bacteria by two distinct mechanisms.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1585
page 1585
icon of scanned page 1586
page 1586
icon of scanned page 1587
page 1587
icon of scanned page 1588
page 1588
icon of scanned page 1589
page 1589
icon of scanned page 1590
page 1590
icon of scanned page 1591
page 1591
icon of scanned page 1592
page 1592
icon of scanned page 1593
page 1593
Version history
  • Version 1 (May 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts