Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Human eosinophil major basic protein induces airway constriction and airway hyperresponsiveness in primates.
R H Gundel, … , L G Letts, G J Gleich
R H Gundel, … , L G Letts, G J Gleich
Published April 1, 1991
Citation Information: J Clin Invest. 1991;87(4):1470-1473. https://doi.org/10.1172/JCI115155.
View: Text | PDF
Research Article

Human eosinophil major basic protein induces airway constriction and airway hyperresponsiveness in primates.

  • Text
  • PDF
Abstract

We have examined the effects of direct intratracheal instillation of purified eosinophil granule proteins on pulmonary function and airway responsiveness in primates. The results of this study show for the first time that installation of major basic protein (MBP) directly into the trachea of primates results in a significant and dose-related increase in airway responsiveness to inhaled methacholine. Furthermore, MBP and eosinophil peroxidase (EPO) induce a transient bronchoconstriction immediately after instillation that resolves by 1 h postinstillation. In contrast, instillation of other eosinophil granule proteins had no effect on airway responsiveness or pulmonary function. These data indicate a direct role of the eosinophil in the pathogenesis of airway hyperresponsiveness. We suggest that the MBP of human eosinophils has an effector role in the pathogenesis of airway hyperresponsiveness which may involve active interaction with resident airway tissue cells. MBP may also mediate altered lung function in various inflammatory lung diseases associated with pulmonary eosinophilia.

Authors

R H Gundel, L G Letts, G J Gleich

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts