Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress.
Y Ikeda, … , K Watanabe, I Itagaki
Y Ikeda, … , K Watanabe, I Itagaki
Published April 1, 1991
Citation Information: J Clin Invest. 1991;87(4):1234-1240. https://doi.org/10.1172/JCI115124.
View: Text | PDF
Research Article

The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress.

  • Text
  • PDF
Abstract

Exposure of platelets to shear stress leads to aggregation in the absence of exogenous agonists. We have now found that different adhesive proteins and platelet membrane glycoproteins are involved in aggregation depending on the shear stress conditions and the concentration of divalent cations in the medium. When blood is collected with trisodium citrate as anticoagulant, which causes a decrease in the levels of external ionized calcium ([Ca2+]o), platelet aggregation can be induced under low shear force (12 dyn/cm2) and is mediated by fibrinogen binding to the glycoprotein IIb-IIIa complex. Aggregates formed under these conditions are not stable, and when shear force is increased to 68 dyn/cm2, disaggregation results. By contrast, platelets from blood collected with hirudin as anticoagulant, wherein [Ca2+]o is within normal plasma levels, do not undergo low shear-induced aggregation; however, after exposure to a shear force above 80 dyn/cm2, aggregation is observed but only when von Willebrand factor is present and can interact with both its platelet binding sites, glycoprotein Ib-IX and glycoprotein IIb-IIIa. Fibrinogen is not involved in high shear-induced aggregation which, in fact, occurs normally in patients with severe afibrinogenemia. Thus, von Willebrand factor in the absence of exogenous agonists can mediate platelet aggregation in experimental conditions that may mimic the hemorheological situation of partially occluded arteries. This pathway of platelet aggregation involving only one adhesive ligand and two membrane adhesion receptors may play a relevant role in thrombogenesis.

Authors

Y Ikeda, M Handa, K Kawano, T Kamata, M Murata, Y Araki, H Anbo, Y Kawai, K Watanabe, I Itagaki

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts