Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115087

Tumor necrosis factor downregulates granulocyte-colony-stimulating factor receptor expression on human acute myeloid leukemia cells and granulocytes.

O Elbaz, L M Budel, H Hoogerbrugge, I P Touw, R Delwel, L A Mahmoud, and B Löwenberg

Dr. Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.

Find articles by Elbaz, O. in: PubMed | Google Scholar

Dr. Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.

Find articles by Budel, L. in: PubMed | Google Scholar

Dr. Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.

Find articles by Hoogerbrugge, H. in: PubMed | Google Scholar

Dr. Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.

Find articles by Touw, I. in: PubMed | Google Scholar

Dr. Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.

Find articles by Delwel, R. in: PubMed | Google Scholar

Dr. Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.

Find articles by Mahmoud, L. in: PubMed | Google Scholar

Dr. Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.

Find articles by Löwenberg, B. in: PubMed | Google Scholar

Published March 1, 1991 - More info

Published in Volume 87, Issue 3 on March 1, 1991
J Clin Invest. 1991;87(3):838–841. https://doi.org/10.1172/JCI115087.
© 1991 The American Society for Clinical Investigation
Published March 1, 1991 - Version history
View PDF
Abstract

Tumor necrosis factor (TNF) inhibits granulocyte-colony-stimulating factor (G-CSF)-induced human acute myeloid leukemia (AML) growth in vitro. Incubation of blasts from three patients with AML in serum-free medium with TNF (10(3) U/ml), and subsequent binding studies using 125I-G-CSF reveal that TNF downregulates the numbers of G-CSF receptors by approximately 70%. G-CSF receptor numbers on purified blood granulocytes are also downmodulated by TNF. Downregulation of G-CSF receptor expression becomes evident within 10 min after incubation of the cells with TNF at 37 degrees C and is not associated with an apparent change of the dissociation constant (Kd). The TNF effect does not occur at 0 degrees C and cannot be induced by IL-2, IL-6, or GM-CSF. TNF probably exerts its effect through activation of protein kinase C (PKC) as the TNF effect on G-CSF receptor levels can be mimicked by 12-O-tetradecanoylphorbol-13- acetate. The PKC inhibitor Staurosporine (Sigma Chemical Co., St. Louis, MO) as well as protease inhibitors can completely prevent G-CSF receptor downmodulation. Thus, it appears TNF may act as a regulator of G-CSF receptor expression in myeloid cells and shut off G-CSF dependent hematopoiesis. The regulatory ability of TNF may explain the antagonism between TNF and G-CSF stimulation.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 838
page 838
icon of scanned page 839
page 839
icon of scanned page 840
page 840
icon of scanned page 841
page 841
Version history
  • Version 1 (March 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts