Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115060

Activation of skeletal muscle casein kinase II by insulin is not diminished in subjects with insulin resistance.

R Maeda, I Raz, F Zurlo, and J Sommercorn

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Maeda, R. in: PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Raz, I. in: PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Zurlo, F. in: PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Sommercorn, J. in: PubMed | Google Scholar

Published March 1, 1991 - More info

Published in Volume 87, Issue 3 on March 1, 1991
J Clin Invest. 1991;87(3):1017–1022. https://doi.org/10.1172/JCI115060.
© 1991 The American Society for Clinical Investigation
Published March 1, 1991 - Version history
View PDF
Abstract

Insulin resistance, which may precede the development of non-insulin-dependent diabetes mellitus in Pima Indians, appears to result from a postreceptor defect in signal transduction in skeletal muscle. To identify the putative postreceptor lesion responsible for insulin resistance in Pima Indians, we investigated the influence of insulin on the activity of casein kinase II (CKII) in skeletal muscle of seven insulin-sensitive, four insulin-resistant, nondiabetic, and five insulin-resistant diabetic Pima Indians during a 2 h hyperinsulinemic, euglycemic clamp. In sensitive subjects, CKII was transiently activated reaching a maximum over basal activity (42%) at 45 min before declining. CKII was also stimulated in resistant (19%) and diabetic (34%) subjects. Basal CKII activity in resistant subjects was 40% higher than in either sensitive or diabetic subjects, although the concentration of CKII protein, as determined by Western blotting, was equal among the three groups. Basal CKII activity was correlated with fasting plasma insulin concentrations, suggesting that the higher activity in resistant subjects resulted from insulin action. Extracts of muscle obtained from all three groups either before or after insulin administration were treated with immobilized alkaline phosphatase, which reduced and equalized CKII activity. These results suggest that insulin stimulates CKII activity in human skeletal muscle by a mechanism involving phosphorylation of either CKII or of an effector molecule, and support the idea that elevated basal activity in resistant subjects results from insulin action. It appears that the ability of insulin to activate CKII in skeletal muscle is not impaired in insulin-resistant Pima Indians, and that the biochemical lesion responsible for insulin resistance occurs either downstream from CKII or in a different pathway of insulin action.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1017
page 1017
icon of scanned page 1018
page 1018
icon of scanned page 1019
page 1019
icon of scanned page 1020
page 1020
icon of scanned page 1021
page 1021
icon of scanned page 1022
page 1022
Version history
  • Version 1 (March 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts