Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Expression of rat renal Na/H antiporter mRNA levels in response to respiratory and metabolic acidosis.
R Krapf, … , J Pouysségur, F C Rector Jr
R Krapf, … , J Pouysségur, F C Rector Jr
Published February 1, 1991
Citation Information: J Clin Invest. 1991;87(2):747-751. https://doi.org/10.1172/JCI115057.
View: Text | PDF
Research Article

Expression of rat renal Na/H antiporter mRNA levels in response to respiratory and metabolic acidosis.

  • Text
  • PDF
Abstract

The mammalian proximal tubule is an important mediator of the renal adaptive response to systemic acidosis. In chronic metabolic and respiratory acidosis the bicarbonate reabsorptive (or proton secretory) capacity is increased. This increase is mediated, at least in part, by an increase in Vmax of the luminal Na/H antiporter. To determine whether this adaptation involves increased mRNA expression, Na/H antiporter mRNA levels were measured by Northern analysis in renal cortex of rats with metabolic (6 mmol/kg body wt NH4Cl for 2 or 5 d) and respiratory (10% CO2/air balanced for 2 or 5 d) acidosis and of normal, pair-fed rats. Na/H antiporter mRNA levels were unchanged after 2 d of both metabolic and respiratory acidosis. After 5 d, however, Na/H antiporter mRNA expression was increased 1.76 +/- 0.12-fold in response to metabolic acidosis (P less than 0.005, n = 8), but was not different from normal in response to respiratory acidosis: 1.1 +/- 0.2 (NS, n = 8). Thus, the renal adaptive response to metabolic acidosis involves increased cortical Na/H antiporter mRNA levels. In contrast, the enhanced proximal tubule Na/H antiporter activity and bicarbonate reabsorption in respiratory acidosis seem to involve mechanisms other than increased Na/H antiporter gene expression.

Authors

R Krapf, D Pearce, C Lynch, X P Xi, T L Reudelhuber, J Pouysségur, F C Rector Jr

×

Usage data is cumulative from October 2024 through October 2025.

Usage JCI PMC
Text version 106 3
PDF 40 3
Scanned page 129 2
Citation downloads 43 0
Totals 318 8
Total Views 326
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts