Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

A deletion in the gene for glycoprotein IIb associated with Glanzmann's thrombasthenia.
C D Burk, … , B S Coller, M Poncz
C D Burk, … , B S Coller, M Poncz
Published January 1, 1991
Citation Information: J Clin Invest. 1991;87(1):270-276. https://doi.org/10.1172/JCI114982.
View: Text | PDF
Research Article

A deletion in the gene for glycoprotein IIb associated with Glanzmann's thrombasthenia.

  • Text
  • PDF
Abstract

The platelet fibrinogen receptor is composed of a complex of glycoproteins (GP) IIb and IIIa on the surface of platelets. Deficient function of this receptor prevents normal platelet aggregation, resulting in Glanzmann's thrombasthenia (GT). In this paper, we describe a black thrombasthenic patient who is either homozygous or hemizygous for a deletion within the GPIIb gene. Initial Western blot analysis of platelet proteins from this patient did not detect any GPIIb, but did detect small amounts of GPIIIa of normal mobility. Quantitation of vitronectin receptor (VNR) demonstrated that this thrombasthenic patient had approximately 1.5-2 times the number of these receptors per platelet compared with controls, a finding that has previously been noted in other thrombasthenic patients with defects in GPIIb. Genomic Southern blot studies demonstrated a deletion in the GPIIb gene of approximately 4.5 kilobasepairs (kb). Analysis of the isolated GPIIb gene demonstrated that the deletion begins between two Alu repeats within intron 1 and ends in intron 9. Polymerase chain reaction (PCR) studies using platelet RNA and oligonucleotides directed to both the 5' and 3' ends of the GPIIb cDNA sequence easily detected GPIIb transcript, suggesting that the genomic deletion of exons 2-9 does not significantly decrease the level of the GPIIb mRNA. Sequence analysis of PCR-generated GPIIb cDNA showed that a cryptic AG splice acceptor sequence was being utilized, resulting in a transcript that contained a portion of introns 1 and 9, as well as having a deletion of exons 2-9. Unlike the GPIIb gene, the GPIIIa gene appears to be intact by Southern blot analysis. PCR studies using platelet RNA and oligonucleotides directed to the GPIIIa cDNA sequence demonstrated the presence of GPIIIa mRNA. In summary, the thrombasthenic state in this patient appears to be due to a GPIIb gene deletion resulting in an abnormal transcript and no detectable platelet GPIIb. Platelet GPIIIa levels were secondarily low presumably due to the known instability of GPIIIa in the absence of GPIIb.

Authors

C D Burk, P J Newman, S Lyman, J Gill, B S Coller, M Poncz

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts