Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta.
R L Minor Jr, P R Myers, R Guerra Jr, J N Bates, D G Harrison
R L Minor Jr, P R Myers, R Guerra Jr, J N Bates, D G Harrison
View: Text | PDF
Research Article

Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta.

  • Text
  • PDF
Abstract

We examined the hypothesis that impaired endothelium-dependent vasodilation in atherosclerosis is associated with decreased synthesis of nitrogen oxides by the vascular endothelium. The descending thoracic aortae of rabbits fed either normal diet, a high cholesterol diet for 2-5 wk (hypercholesterolemic, HC), or a high cholesterol diet for 6 mo (atherosclerotic, AS) were perfused in a bioassay organ chamber with physiologic buffer containing indomethacin. Despite a dramatic impairment in the vasodilator activity of endothelium-dependent relaxing factor (EDRF) released from both HC and AS aortae (assessed by bioassay), the release of nitrogen oxides (measured by chemiluminescence) from these vessels was not reduced, but markedly increased compared to NL. Thus, impaired endothelium-dependent relaxation in atherosclerosis is neither due to decreased activity of the enzyme responsible for the production of nitrogen oxides from arginine nor to arginine deficiency. Because the production of nitrogen oxides increased in response to acetylcholine in both hypercholesterolemic and atherosclerotic vessels, impairments in signal transduction are not responsible for abnormal endothelium-dependent relaxations. Impaired vasodilator activity of EDRF by cholesterol feeding may result from loss of incorporation of nitric oxide into a more potent parent compound, or accelerated degradation of EDRF.

Authors

R L Minor Jr, P R Myers, R Guerra Jr, J N Bates, D G Harrison

×

Loading citation information...
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts