Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114941

Role of intact cardiac nerves and reflex mechanisms in desensitization to catecholamines in conscious dogs.

J Nejima, N Uemura, D E Vatner, C J Homcy, T H Hintze, and S F Vatner

Department of Medicine, Harvard Medical School, Brigham & Women's Hospital, Boston, Massachusetts 02115.

Find articles by Nejima, J. in: PubMed | Google Scholar

Department of Medicine, Harvard Medical School, Brigham & Women's Hospital, Boston, Massachusetts 02115.

Find articles by Uemura, N. in: PubMed | Google Scholar

Department of Medicine, Harvard Medical School, Brigham & Women's Hospital, Boston, Massachusetts 02115.

Find articles by Vatner, D. in: PubMed | Google Scholar

Department of Medicine, Harvard Medical School, Brigham & Women's Hospital, Boston, Massachusetts 02115.

Find articles by Homcy, C. in: PubMed | Google Scholar

Department of Medicine, Harvard Medical School, Brigham & Women's Hospital, Boston, Massachusetts 02115.

Find articles by Hintze, T. in: PubMed | Google Scholar

Department of Medicine, Harvard Medical School, Brigham & Women's Hospital, Boston, Massachusetts 02115.

Find articles by Vatner, S. in: PubMed | Google Scholar

Published December 1, 1990 - More info

Published in Volume 86, Issue 6 on December 1, 1990
J Clin Invest. 1990;86(6):2046–2053. https://doi.org/10.1172/JCI114941.
© 1990 The American Society for Clinical Investigation
Published December 1, 1990 - Version history
View PDF
Abstract

To study chronic catecholamine desensitization, mini-osmotic pumps were implanted subcutaneously to deliver NE, (0.5 micrograms/kg/min) or saline over 3-4 wk in dogs instrumented with left ventricular (LV) pressure gauges and arterial and left atrial pressure catheters. An acute challenge to NE (0.4 micrograms/kg/min) in intact, conscious dogs increased LV dP/dt by 1,531 +/- 208 mmHg/s before NE pumps, and by a similar amount, 1,340 +/- 166 mmHg/s, 3-4 wk after NE pumps. In contrast, an acute challenge to isoproterenol (ISO, 0.4 micrograms/kg/min) increased LV dP/dt by 5,344 +/- 532 mmHg/s before NE pumps, and significantly less (P less than 0.05; 2,425 +/- 175 mmHg/s) after NE pumps. In the presence of ganglionic and alpha 1-adrenergic blockades, NE (0.4 micrograms/kg/min) increased LV dP/dt by 3,656 +/- 468 mmHg/s before NE pumps and significantly less (P less than 0.01; 1,459 +/- 200 mmHg/s) after NE pumps. Confirming this, an acute challenge to NE (0.4 micrograms/kg/min) in dogs with arterial baroreceptor denervation increased LV dP/dt by 3,732 +/- 896 mmHg/s before NE pumps, and significantly less (P less than 0.05, 1,725 +/- 408 mmHg/s) after NE pumps. In addition, in cardiac denervated dogs, NE (0.4 micrograms/kg/min) increased LV dP/dt by 9,901 +/- 1,404 mmHg/s before NE pumps and significantly less (P less than 0.01, 2,690 +/- 306 mmHg/s) after NE pumps. Desensitization of heart rate responses to NE challenge was also more apparent in the absence of reflex mechanisms. Thus, neural reflex mechanisms play a major role in physiological expression of cardiac desensitization to catecholamines in conscious dogs.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2046
page 2046
icon of scanned page 2047
page 2047
icon of scanned page 2048
page 2048
icon of scanned page 2049
page 2049
icon of scanned page 2050
page 2050
icon of scanned page 2051
page 2051
icon of scanned page 2052
page 2052
icon of scanned page 2053
page 2053
Version history
  • Version 1 (December 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts