Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Lack of 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase/isomerase in fibroblasts from a child with urinary excretion of 3 beta-hydroxy-delta 5-bile acids. A new inborn error of metabolism.
M S Buchmann, … , J Sjövall, I Björkhem
M S Buchmann, … , J Sjövall, I Björkhem
Published December 1, 1990
Citation Information: J Clin Invest. 1990;86(6):2034-2037. https://doi.org/10.1172/JCI114939.
View: Text | PDF
Research Article

Lack of 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase/isomerase in fibroblasts from a child with urinary excretion of 3 beta-hydroxy-delta 5-bile acids. A new inborn error of metabolism.

  • Text
  • PDF
Abstract

Cultured fibroblasts were shown to be capable of catalyzing the conversion of 7 alpha-hydroxy-cholesterol to 7 alpha-hydroxy-4-cholesten-3-one, an important reaction in bile acid synthesis. The apparent Km was approximately 7 mumol/liter and Vmax varied between 3 and 9 nmol/mg protein per h under the assay conditions used. The assay was used to investigate fibroblasts from a patient who presented with a familial giant cell hepatitis and who was found to excrete the monosulfates of 3 beta, 7 alpha-dihydroxy-5-cholenoic acid and 3 beta, 7 alpha, 12 alpha-trihydroxy-5-cholenoic acid in urine (Clayton, P. T., J. V. Leonard, A. M. Lawson, K. D. R. Setchell, S. Andersson, B. Egestad, and J. Sjövall. 1987. J. Clin. Invest. 79:1031-1038). In addition 7 alpha-hydroxy-cholesterol was found to accumulate in the circulation. Cultured fibroblasts from this boy were completely devoid of 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase/isomerase activity. Fibroblasts from his parents had reduced activity, compatible with a heterozygous genotype. The results provide strong evidence for the suggestion that this patient's liver disease was caused by a primary defect in the 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase/isomerase involved in bile acid biosynthesis.

Authors

M S Buchmann, E A Kvittingen, H Nazer, T Gunasekaran, P T Clayton, J Sjövall, I Björkhem

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts