Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Noncoordinate regulation of alpha-1 adrenoreceptor coupling and reexpression of alpha skeletal actin in myocardial infarction-induced left ventricular failure in rats.
L G Meggs, … , J M Capasso, P Anversa
L G Meggs, … , J M Capasso, P Anversa
Published November 1, 1990
Citation Information: J Clin Invest. 1990;86(5):1451-1458. https://doi.org/10.1172/JCI114861.
View: Text | PDF
Research Article

Noncoordinate regulation of alpha-1 adrenoreceptor coupling and reexpression of alpha skeletal actin in myocardial infarction-induced left ventricular failure in rats.

  • Text
  • PDF
Abstract

To determine the effects of myocardial infarction-induced left ventricular failure on the regulation of surface alpha-1 adrenoreceptors and signal transduction, large infarcts were produced in rats and the animals killed seven days later. After the documentation of impaired left ventricular pump performance, radioligand binding studies of the alpha-1 adrenoreceptor, norepinephrine-stimulated phosphoinositol turnover, and ADP ribosylation of 41 kD substrate by pertussis toxin were examined in the hypertrophying unaffected myocardium. Moreover, the expression of sarcomeric actin isoforms was analyzed by Northern blots and hybridization with specific oligonucleotide probes. Alpha-1 adrenoreceptor density was found not to be altered in membranes obtained from the spared left ventricular tissue, whereas phosphoinositol turnover was increased 3.1-fold in the viable myocytes of infarcted hearts. Furthermore, pertussis toxin substrate was augmented 2.5-fold in membranes prepared from the surviving left ventricular myocardium. Finally, an upregulation of the skeletal actin isoform was detected in the tissue of the failing left ventricle. In conclusion, the possibility is raised that in the presence of severe myocardial dysfunction and ongoing reactive hypertrophy, effector pathways linked to the alpha-1 adrenoreceptor may stimulate the myocyte hypertrophic response which would tend to normalize cardiac hemodynamics. The reexpression of alpha skeletal actin may be a molecular indicator of the persistance of an overload on the myocardium.

Authors

L G Meggs, J Tillotson, H Huang, E H Sonnenblick, J M Capasso, P Anversa

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 111 0
PDF 48 17
Scanned page 317 3
Citation downloads 69 0
Totals 545 20
Total Views 565
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts