Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114828

Enhanced utilization of exogenous glucose improves cardiac function in hypoxic rabbit ventricle without increasing total glycolytic flux.

E M Runnman, S T Lamp, and J N Weiss

Department of Medicine, UCLA School of Medicine 90024.

Find articles by Runnman, E. in: PubMed | Google Scholar

Department of Medicine, UCLA School of Medicine 90024.

Find articles by Lamp, S. in: PubMed | Google Scholar

Department of Medicine, UCLA School of Medicine 90024.

Find articles by Weiss, J. in: PubMed | Google Scholar

Published October 1, 1990 - More info

Published in Volume 86, Issue 4 on October 1, 1990
J Clin Invest. 1990;86(4):1222–1233. https://doi.org/10.1172/JCI114828.
© 1990 The American Society for Clinical Investigation
Published October 1, 1990 - Version history
View PDF
Abstract

The effects of elevated glucose on cardiac function during hypoxia were investigated in isolated arterially perfused rabbit interventricular septa. Rest tension, developed tension, intracellular potential, 42K+ efflux, lactate production, exogenous glucose utilization, and tissue high-energy phosphate levels were measured during a 50-min period of hypoxia with 4, 5, or 50 mM glucose present (isosmotically balanced with sucrose) and during reoxygenation for 60 min with perfusate containing 5 mM glucose/45 mM sucrose. At physiologic (4 or 5 mM) and supraphysiologic glucose (50 mM), lactate production and high-energy phosphate levels during hypoxia were equally well maintained, yet cardiac dysfunction was markedly attenuated by 50 mM glucose. Despite identical rates of total glycolytic flux, exogenous glucose utilization was enhanced by 50 mM glucose so that tissue glycogen levels remained normal during hypoxia, whereas glycogen became depleted with 4 or 5 mM glucose present during hypoxia. Most of the beneficial effects of 50 mM glucose occurred during the first 25 min of hypoxia. Prior glycogen depletion had no deleterious effects during hypoxia with 50 mM glucose present, but exacerbated cardiac dysfunction during hypoxia with 5 mM glucose present. These findings indicate that enhanced utilization of exogenous glucose improved cardiac function during hypoxia without increasing total glycolytic flux or tissue high-energy phosphate levels, suggesting a novel cardioprotective mechanism.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1222
page 1222
icon of scanned page 1223
page 1223
icon of scanned page 1224
page 1224
icon of scanned page 1225
page 1225
icon of scanned page 1226
page 1226
icon of scanned page 1227
page 1227
icon of scanned page 1228
page 1228
icon of scanned page 1229
page 1229
icon of scanned page 1230
page 1230
icon of scanned page 1231
page 1231
icon of scanned page 1232
page 1232
icon of scanned page 1233
page 1233
Version history
  • Version 1 (October 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts