Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114819

Apolipoprotein A-I and its amphipathic helix peptide analogues inhibit human immunodeficiency virus-induced syncytium formation.

B J Owens, G M Anantharamaiah, J B Kahlon, R V Srinivas, R W Compans, and J P Segrest

Department of Microbiology, University of Alabama, Birmingham 35294.

Find articles by Owens, B. in: JCI | PubMed | Google Scholar

Department of Microbiology, University of Alabama, Birmingham 35294.

Find articles by Anantharamaiah, G. in: JCI | PubMed | Google Scholar

Department of Microbiology, University of Alabama, Birmingham 35294.

Find articles by Kahlon, J. in: JCI | PubMed | Google Scholar

Department of Microbiology, University of Alabama, Birmingham 35294.

Find articles by Srinivas, R. in: JCI | PubMed | Google Scholar

Department of Microbiology, University of Alabama, Birmingham 35294.

Find articles by Compans, R. in: JCI | PubMed | Google Scholar

Department of Microbiology, University of Alabama, Birmingham 35294.

Find articles by Segrest, J. in: JCI | PubMed | Google Scholar

Published October 1, 1990 - More info

Published in Volume 86, Issue 4 on October 1, 1990
J Clin Invest. 1990;86(4):1142–1150. https://doi.org/10.1172/JCI114819.
© 1990 The American Society for Clinical Investigation
Published October 1, 1990 - Version history
View PDF
Abstract

The envelope (membrane) glycoprotein of HIV is essential for virus attachment and entry into host cells. Additionally, when expressed on the plasma membrane of infected cells, the envelope protein is responsible for mediating cell-cell fusion which leads to the formation of multinucleated giant cells, one of the major cytopathic effects of HIV infections. The envelope glycoproteins of HIV contain regions that can fold into amphipathic alpha-helixes, and these regions have been suggested to play a role in subunit associations and in virus-induced cell fusion and cytopathic effects of HIV. We therefore tested the possibility that amphipathic helix-containing peptides and proteins may interfere with the HIV amphipathic peptides and inhibit those steps of HIV infection involving membrane fusion. Apolipoprotein A-I, the major protein component of high density lipoprotein, and its amphipathic peptide analogue were found to inhibit cell fusion, both in HIV-1-infected T cells and in recombinant vaccinia-virus-infected CD4+ HeLa cells expressing HIV envelope protein on their surfaces. The amphipathic peptides inhibited the infectivity of HIV-1. The inhibitory effects were manifest when the virus, but not cells, was pretreated with the peptides. Also, a reduction in HIV-induced cell killing was observed when virus-infected cell cultures were maintained in presence of amphipathic peptides. These results have potential implications for HIV biology and therapy.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1142
page 1142
icon of scanned page 1143
page 1143
icon of scanned page 1144
page 1144
icon of scanned page 1145
page 1145
icon of scanned page 1146
page 1146
icon of scanned page 1147
page 1147
icon of scanned page 1148
page 1148
icon of scanned page 1149
page 1149
icon of scanned page 1150
page 1150
Version history
  • Version 1 (October 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts