Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Essential fatty acid deficiency ameliorates acute renal dysfunction in the rat after the administration of the aminonucleoside of puromycin.
K P Harris, … , S Klahr, G F Schreiner
K P Harris, … , S Klahr, G F Schreiner
Published October 1, 1990
Citation Information: J Clin Invest. 1990;86(4):1115-1123. https://doi.org/10.1172/JCI114816.
View: Text | PDF
Research Article

Essential fatty acid deficiency ameliorates acute renal dysfunction in the rat after the administration of the aminonucleoside of puromycin.

  • Text
  • PDF
Abstract

The administration of the aminonucleoside of puromycin (PAN) to rats causes the nephrotic syndrome that is associated with an acute decline in renal function, and an interstitial infiltrate. We examined whether essential fatty acid deficiency (EFAD), which inhibits macrophage infiltration in glomerulonephritis, affects PAN-induced renal dysfunction. Both control and EFAD rats developed proteinuria that resolved over 28 d. After PAN administration, there was a prominent infiltration of macrophages in rats fed a normal diet. The infiltrate was prevented by the EFAD diet. The absence of a macrophage interstitial infiltrate was associated with a significantly higher Cin in the EFAD rats than in controls at 7 d (5.21 +/- 1.19 versus 0.39 +/- 0.08, P less than 0.002 ml/min/kg BW). In addition, CPAH fell to less than 10 ml/min/kg BW by day 7 in controls, but remained the same as normal in the EFAD. After administration of PAN to control rats, there was no increase in urinary thromboxane excretion or an increase in glomerular thromboxane production. Furthermore, the effect of EFAD could not be mimicked by the administration of a thromboxane synthase inhibitor. Irradiation-induced leukopenia in rats on a normal diet markedly improved glomerular filtration and renal blood flow in acutely nephrotic rats. EFAD prevents the interstitial cellular infiltrate and the renal ischemia associated with experimental nephrosis. The recruitment of mononuclear cells into the kidney following PAN directly contributes to the decline in renal function.

Authors

K P Harris, J B Lefkowith, S Klahr, G F Schreiner

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts