Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Feedback inhibition of aldose reductase gene expression in rat renal medulla. Galactitol accumulation reduces enzyme mRNA levels and depletes cellular inositol content.
C Bondy, … , S L Lightman, P F Kador
C Bondy, … , S L Lightman, P F Kador
Published October 1, 1990
Citation Information: J Clin Invest. 1990;86(4):1103-1108. https://doi.org/10.1172/JCI114814.
View: Text | PDF
Research Article

Feedback inhibition of aldose reductase gene expression in rat renal medulla. Galactitol accumulation reduces enzyme mRNA levels and depletes cellular inositol content.

  • Text
  • PDF
Abstract

Aldose reductase (AR) is an enzyme responsible for converting glucose into sorbitol and galactose into galactitol. In the renal inner medulla, where sorbitol production plays a role in cellular osmoregulation, AR gene expression has been shown to be osmotically regulated. The present study examined the effects of the accumulation of the AR end product, galactitol, induced by galactose feeding, on AR gene expression and on the balance of other cellular osmolytes, including inositol, in the renal medulla. To differentiate between the effects of excess substrate, product, and intervening osmotic factors, rats were fed either control, galactose, galactose and sorbinil (an AR inhibitor), or control plus sorbinil diets. Renal papillae were assayed for AR mRNA, sodium, urea, galactose, galactitol, sorbitol, inositol, and other organic osmolytes. Galactose feeding resulted in a great accumulation of galactitol and reduction in AR mRNA levels in renal papillae. Associated with these changes was a significant depletion of renal papillary sorbitol, inositol, and glycerolphosphocholine. These effects were largely attenuated by sorbinil. The present findings suggest that renal cellular accumulation of the enzyme's polyol product causes downregulation of AR gene expression. Furthermore, our findings suggest that the inositol depletion associated with sorbitol or galactitol accumulation in various cell types during hyperglycemia may be a function of cellular osmoregulation.

Authors

C Bondy, B D Cowley Jr, S L Lightman, P F Kador

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 102 5
PDF 53 9
Scanned page 191 2
Citation downloads 48 0
Totals 394 16
Total Views 410
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts