Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Synergism between hepatic injuries and a nonhepatotropic reovirus in mice. Enhanced hepatic infection and death.
D A Piccoli, … , A Morrison, D H Rubin
D A Piccoli, … , A Morrison, D H Rubin
Published October 1, 1990
Citation Information: J Clin Invest. 1990;86(4):1038-1045. https://doi.org/10.1172/JCI114806.
View: Text | PDF
Research Article

Synergism between hepatic injuries and a nonhepatotropic reovirus in mice. Enhanced hepatic infection and death.

  • Text
  • PDF
Abstract

Reovirus type 1, after intravenous inoculation in the adult mouse, is secreted via bile into the intestine in an infectious form. Although reovirus type 1 is rapidly removed from systemic circulation by the liver and the lung, very few hepatocytes express reovirus antigen during infection. In intestinal cells, reovirus replicates selectively in the crypts. This site preference may be due to active cell proliferation in the crypts. We hypothesized that the state of the cell may affect virus replication and tested this hypothesis by using chemical and surgical means to increase hepatic mitotic activity. Adult mice were treated with carbon tetrachloride or surgical trauma, inoculated with reovirus type 1 intravenously, and subsequently killed. Virus antigen was identified using a highly specific immunohistochemical technique. Liver sections were stained using immunoperoxidase with specific rabbit antireovirus antibody. Hepatotoxin and surgical trauma increase reovirus antigen detection in both Kupffer cells and hepatocytes. Only the sequential administration of CCl4 and virus caused mortality at doses sublethal for each alone. These data demonstrate a synergism between hepatic injury and reovirus which results in a significant increase in the magnitude of viral infection and contributes to mortality. Such synergism may be important in idiopathic liver disease.

Authors

D A Piccoli, C L Witzleben, C J Guico, A Morrison, D H Rubin

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 78 0
PDF 46 13
Scanned page 299 1
Citation downloads 54 0
Totals 477 14
Total Views 491
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts