Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114787

Pituitary-like proopiomelanocortin transcripts in human Leydig cell tumors.

Y de Keyzer, F Lenne, J F Massias, D Vieau, J P Luton, A Kahn, and X Bertagna

Centre de Recherche sur les Maladies Endocriniennes, Hôpital Cochin, Paris, France.

Find articles by de Keyzer, Y. in: PubMed | Google Scholar

Centre de Recherche sur les Maladies Endocriniennes, Hôpital Cochin, Paris, France.

Find articles by Lenne, F. in: PubMed | Google Scholar

Centre de Recherche sur les Maladies Endocriniennes, Hôpital Cochin, Paris, France.

Find articles by Massias, J. in: PubMed | Google Scholar

Centre de Recherche sur les Maladies Endocriniennes, Hôpital Cochin, Paris, France.

Find articles by Vieau, D. in: PubMed | Google Scholar

Centre de Recherche sur les Maladies Endocriniennes, Hôpital Cochin, Paris, France.

Find articles by Luton, J. in: PubMed | Google Scholar

Centre de Recherche sur les Maladies Endocriniennes, Hôpital Cochin, Paris, France.

Find articles by Kahn, A. in: PubMed | Google Scholar

Centre de Recherche sur les Maladies Endocriniennes, Hôpital Cochin, Paris, France.

Find articles by Bertagna, X. in: PubMed | Google Scholar

Published September 1, 1990 - More info

Published in Volume 86, Issue 3 on September 1, 1990
J Clin Invest. 1990;86(3):871–877. https://doi.org/10.1172/JCI114787.
© 1990 The American Society for Clinical Investigation
Published September 1, 1990 - Version history
View PDF
Abstract

Proopiomelanocortin is a polypeptide precursor molecule, the processing of which generates ACTH, beta-endorphin, the beta- and gamma-lipotropins, the joining peptide, and the NH2-terminal fragment. Anterior pituitary corticotrophs are the major site of proopiomelanocortin gene expression in man and the predominant, if not sole source of circulating ACTH. Recent data have established that proopiomelanocortin gene expression also occurs in various normal nonpituitary tissues, one of the best studied being the testis. In this latter organ the dominant gene products are short transcripts of approximately 800 nucleotides, which lack the first two exons of the gene and cannot encode a complete proopiomelanocortin molecule. In this report we show that the mode of proopiomelanocortin gene expression is occasionally modified in human Leydig cell tumors: a 1,200-nucleotide mRNA species identical to that in the pituitary is produced. It results from the usual (pituitary) start site of transcription and thus can encode the complete proopiomelanocortin molecule. In two out of six tumors, large amounts of the 1,200-nucleotide transcript led to a dramatic increase of approximately 1,000-fold in proopiomelanocortin peptide concentrations as compared with the normal and peritumoral testis. Proopiomelanocortin processing in these tumors generates various peptide fragments including ACTH. These results may help to understand the mechanism of proopiomelanocortin expression in nonpituitary tumors and have implications for the more general phenomenon of ectopic hormone secretion.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 871
page 871
icon of scanned page 872
page 872
icon of scanned page 873
page 873
icon of scanned page 874
page 874
icon of scanned page 875
page 875
icon of scanned page 876
page 876
icon of scanned page 877
page 877
Version history
  • Version 1 (September 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts