Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114730

Paradoxical expression of adenosine deaminase in T cells cultured from a patient with adenosine deaminase deficiency and combine immunodeficiency.

F X Arredondo-Vega, J Kurtzberg, S Chaffee, I Santisteban, E Reisner, M S Povey, and M S Hershfield

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Find articles by Arredondo-Vega, F. in: PubMed | Google Scholar

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Find articles by Kurtzberg, J. in: PubMed | Google Scholar

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Find articles by Chaffee, S. in: PubMed | Google Scholar

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Find articles by Santisteban, I. in: PubMed | Google Scholar

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Find articles by Reisner, E. in: PubMed | Google Scholar

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Find articles by Povey, M. in: PubMed | Google Scholar

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Find articles by Hershfield, M. in: PubMed | Google Scholar

Published August 1, 1990 - More info

Published in Volume 86, Issue 2 on August 1, 1990
J Clin Invest. 1990;86(2):444–452. https://doi.org/10.1172/JCI114730.
© 1990 The American Society for Clinical Investigation
Published August 1, 1990 - Version history
View PDF
Abstract

T lymphocytes cultured from a patient (T.D.) with adenosine deaminase (ADA) deficiency expressed ADA activity in the normal range, inconsistent with her severe immunodeficiency, metabolic abnormalities, and with the absence of ADA activity in her B lymphocytes and other nucleated hematopoietic cells. ADA from T.D. T cells had normal Km, heat stability, and sensitivity to ADA inhibitors. Examination of HLA phenotype and polymorphic DNA loci indicated that T.D. was neither chimeric nor a genetic mosaic. Amplified and subcloned ADA cDNA from ADA+ T.D. T cells was shown by allele-specific oligonucleotide hybridization to possess the same mutations (Arg101----Trp, Arg211----His) previously found in the ADA-T.D. B cell line GM 2606 (Akeson, A. L., D. A. Wiginton, M. R. Dusing, J. C. States, and J. J. Hutton. 1988. J. Biol. Chem. 263:16291-16296). Our findings suggest that one of these mutant alleles can be expressed selectively in IL-2-dependent T cells as stable, active enzyme. Cultured T cells from other patients with the Arg211----His mutation did not express significant ADA activity, while some B cell lines from a patient with an Arg101----Gln mutation have been found to express normal ADA activity. We speculate that Arg101 may be at a site that determines degradation of ADA by a protease that is under negative control by IL-2 in T cells, and is variably expressed in B cells. Il-2 might increase ADA expression in T cells of patients who possess mutations of Arg101.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 444
page 444
icon of scanned page 445
page 445
icon of scanned page 446
page 446
icon of scanned page 447
page 447
icon of scanned page 448
page 448
icon of scanned page 449
page 449
icon of scanned page 450
page 450
icon of scanned page 451
page 451
icon of scanned page 452
page 452
Version history
  • Version 1 (August 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts