Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors.
J I Weitz, M Hudoba, D Massel, J Maraganore, J Hirsh
J I Weitz, M Hudoba, D Massel, J Maraganore, J Hirsh
View: Text | PDF
Research Article

Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors.

  • Text
  • PDF
Abstract

Propagation of venous thrombi or rethrombosis after coronary thrombolytic therapy can occur despite heparin administration. To explore potential mechanisms, we set out to determine whether clot-bound thrombin is relatively protected from inhibition by heparin-antithrombin III but susceptible to inactivation by antithrombin III-independent inhibitors. Using plasma fibrinopeptide A (FPA) levels as an index of thrombin activity, we compared the ability of thrombin inhibitors to block FPA release mediated by fluid-phase thrombin with their activity against the clot-bound enzyme. Incubation of thrombin with citrated plasma results in concentration-dependent FPA generation, which reaches a plateau within minutes. In contrast, there is progressive FPA generation when fibrin clots are incubated with citrated plasma. Heparin, hirudin, hirudin dodecapeptide (hirugen), and D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone (PPACK) produce concentration-dependent inhibition of FPA release mediated by fluid-phase thrombin. However, heparin is much less effective at inhibiting thrombin bound to fibrin because a 20-fold higher concentration is necessary to block 70% of the activity of the clot-bound enzyme than is required for equivalent inhibition of fluid-phase thrombin (2.0 and 0.1 U/ml, respectively). In contrast, hirugen and PPACK are equally effective inhibitors of fluid- and solid-phase thrombin, while hirudin is only 50% as effective against the clot-bound enzyme. None of the inhibitors displace bound 125I-labeled thrombin from the clot. These studies indicate that (a) clot-bound thrombin is relatively protected from inhibition by heparin, possibly because the heparin binding site on thrombin is inaccessible when the enzyme is bound to fibrin, and (b) clot-bound thrombin is susceptible to inactivation by antithrombin III-independent inhibitors because the sites of their interaction are not masked by thrombin binding to fibrin. For these reasons, antithrombin III-independent inhibitors may be more effective than heparin in certain clinical settings.

Authors

J I Weitz, M Hudoba, D Massel, J Maraganore, J Hirsh

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 641 53
PDF 94 31
Scanned page 356 3
Citation downloads 88 0
Totals 1,179 87
Total Views 1,266
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts