Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114719

Inability of mitogen-activated lymphocytes obtained from patients with malignant primary intracranial tumors to express high affinity interleukin 2 receptors.

L H Elliott, W H Brooks, and T L Roszman

Department of Microbiology and Immunology, University of Kentucky Medical Center, Lexington 40536-0084.

Find articles by Elliott, L. in: PubMed | Google Scholar

Department of Microbiology and Immunology, University of Kentucky Medical Center, Lexington 40536-0084.

Find articles by Brooks, W. in: PubMed | Google Scholar

Department of Microbiology and Immunology, University of Kentucky Medical Center, Lexington 40536-0084.

Find articles by Roszman, T. in: PubMed | Google Scholar

Published July 1, 1990 - More info

Published in Volume 86, Issue 1 on July 1, 1990
J Clin Invest. 1990;86(1):80–86. https://doi.org/10.1172/JCI114719.
© 1990 The American Society for Clinical Investigation
Published July 1, 1990 - Version history
View PDF
Abstract

Patients with primary malignant brain tumors manifest a variety of abnormalities in cell-mediated and humoral immunity. Diminished T cell reactivity has been shown in these patients to be linked to deficiencies in interleukin 2 (IL-2) production that cannot be overcome by exogenous IL-2. In this study, specific binding of radiolabeled IL-2 to PHA-stimulated lymphocytes from brain tumor patients demonstrates that the number of high affinity interleukin 2 receptors (IL-2R) is greatly reduced. FACS analysis indicates that the relative density of the p55 protein (Tac protein) is lower on the mitogen-activated lymphocytes obtained from patients than on comparably treated lymphocytes from normal individuals. These data indicate that mitogen-stimulated lymphocytes obtained from patients have fewer functional high affinity IL-2R principally because of the failure to express sufficient levels of the p55 protein for association with the p75 protein. Northern analysis of total RNA isolated from mitogen-stimulated T cells from patients demonstrates normal levels of steady state mRNA, which codes for the p55 protein. Moreover, there is no defect in the postranslational processing of the primary translation product of this mRNA suggesting that normal levels of the p55 protein are produced in activated T cells from patients.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 80
page 80
icon of scanned page 81
page 81
icon of scanned page 82
page 82
icon of scanned page 83
page 83
icon of scanned page 84
page 84
icon of scanned page 85
page 85
icon of scanned page 86
page 86
Version history
  • Version 1 (July 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts