Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114673

Clonal composition of benign and malignant human thyroid tumors.

H Namba, K Matsuo, and J A Fagin

Department of Medicine, University of California, Los Angeles School of Medicine 90048.

Find articles by Namba, H. in: PubMed | Google Scholar

Department of Medicine, University of California, Los Angeles School of Medicine 90048.

Find articles by Matsuo, K. in: PubMed | Google Scholar

Department of Medicine, University of California, Los Angeles School of Medicine 90048.

Find articles by Fagin, J. in: PubMed | Google Scholar

Published July 1, 1990 - More info

Published in Volume 86, Issue 1 on July 1, 1990
J Clin Invest. 1990;86(1):120–125. https://doi.org/10.1172/JCI114673.
© 1990 The American Society for Clinical Investigation
Published July 1, 1990 - Version history
View PDF
Abstract

We determined clonality of thyroid tumors from female patients who had restriction fragment length polymorphisms (RFLP) in the X chromosome genes hypoxanthine phosphoribosyltransferase (HPRT) or phosphoglycerate kinase (PGK). We screened normal thyroid tissue from 59 female patients; of the informative cases 14 were heterozygous for a Bgl I site on PGK and 4 were heterozygous for a Bam HI site on HPRT. In monoclonal tumors, one of the polymorphic alleles was selectively digested after additional digestion with Hpa II, a methylation sensitive enzyme, whereas in polyclonal tissue both were decreased to a similar extent. Normal thyroid tissue from all patients showed a polyclonal pattern. Of the 18 tumors studied, 12 were solitary thyroid nodules, and 6 were obtained from multinodular goiters (MNG). The following were monoclonal: 6/6 follicular adenomas, 2/2 follicular carcinomas, and 1/1 anaplastic carcinoma. Two of the three papillary carcinomas showed intermediate patterns, possibly due to contaminating effects of stromal tissue present in most of these neoplasms. Of the six nodules from MNG, four were polyclonal. The two largest gave a distinct monoclonal pattern. Most solitary thyroid tumors are monoclonal, supporting a somatic cell mutation model of thyroid neoplasm formation. Nodules from MNG are largely hyperplastic, although monoclonal neoplasms do occasionally arise within these glands. The specific somatic mutations leading to clonal expansion and determination of tumor phenotype are presently unknown.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 120
page 120
icon of scanned page 121
page 121
icon of scanned page 122
page 122
icon of scanned page 123
page 123
icon of scanned page 124
page 124
icon of scanned page 125
page 125
Version history
  • Version 1 (July 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts