Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Structural model of porcine factor VIII and factor VIIIa molecules based on scanning transmission electron microscope (STEM) images and STEM mass analysis.
M W Mosesson, … , J F Hainfeld, J S Wall
M W Mosesson, … , J F Hainfeld, J S Wall
Published June 1, 1990
Citation Information: J Clin Invest. 1990;85(6):1983-1990. https://doi.org/10.1172/JCI114662.
View: Text | PDF
Research Article

Structural model of porcine factor VIII and factor VIIIa molecules based on scanning transmission electron microscope (STEM) images and STEM mass analysis.

  • Text
  • PDF
Abstract

Porcine plasma factor VIII (fVIII) molecules are heterodimers composed of a 76,000-mol wt light chain (-A3-C1-C2) and a heavy chain ranging in molecular weight from 82,000 (A1-A2) to 166,000 (A1-A2-B). Proteolytic activation of fVIII by thrombin results in fVIIIa heterotrimers lacking B domains (A1, A2, A3-C1-C2). In this study, immunoaffinity purified fVIII was further fractionated by mono S or mono Q chromatography to prepare heterodimers containing a light chain and an A1-A2-B heavy chain (fVIII 166/76) or an A1-A2 heavy chain (fVIII 82/76). Mass analysis of scanning transmission electron microscopic (STEM) images of fVIII 166/76 indicated that heterodimers (mass 237 +/- 20 kD) had irregularly globular core structures 10-12 nm across, and frequently displayed a diffuse, occasionally globular to ovoid satellite structure extending 5-14 nm from the core, and attached to it by a thin stalk. Factor VIII 82/76 molecules (mass 176 +/- 20 kD) had the same core structures as fVIII 166/76 molecules, but lacked the satellite structure. These findings indicate that A1-A2 domains of heavy chains and the light chains of the fVIII procofactor molecule are closely associated and constitute the globular core structure, whereas the B domainal portion of heavy chains comprises the peripheral satellite appendage. Factor VIII core structures commonly displayed a finger-like projection near the origin of the B domainal stalk that was also a consistent feature of the free heavy chains (mass 128-162 kD) found in fVIII 166/76 preparations. Factor VIII light chain monomers (mass, 76 +/- 16 kD) were globular to c-shaped particles 6-8 nm across. These chains commonly possessed a v-shaped projection originating from its middle region, that could also be observed at the periphery of fVIII core molecules. Factor VIIIa preparations contained heterotrimers (mass 162 +/- 13 kD) that had the same dimensions as fVIII core structures, lacked the B domainal appendage, and sometimes possessed the same core features as fVIII molecules. Molecular species corresponding to heterodimers (mass, 128 +/- 13 kD) and unassociated subunit chains (40-100 kD) were also observed in fVIIIa preparations, suggesting that heterotrimers have an appreciable tendency to dissociate, a phenomenon that could explain the decay of fVIIIa activity after thrombin activation of fVIII.

Authors

M W Mosesson, D N Fass, P Lollar, J P DiOrio, C G Parker, G J Knutson, J F Hainfeld, J S Wall

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 104 9
PDF 70 8
Figure 0 4
Scanned page 272 0
Citation downloads 44 0
Totals 490 21
Total Views 511
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts