Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

2,4-Dienoyl-coenzyme A reductase deficiency: a possible new disorder of fatty acid oxidation.
C R Roe, D S Millington, D L Norwood, N Kodo, H Sprecher, B S Mohammed, M Nada, H Schulz, R McVie
C R Roe, D S Millington, D L Norwood, N Kodo, H Sprecher, B S Mohammed, M Nada, H Schulz, R McVie
View: Text | PDF
Research Article

2,4-Dienoyl-coenzyme A reductase deficiency: a possible new disorder of fatty acid oxidation.

  • Text
  • PDF
Abstract

Several inherited disorders of fatty acid beta-oxidation have been described that relate mainly to saturated precursors. This study is the first report of an enzyme defect related only to unsaturated fatty acid oxidation and provides the first in vivo evidence that fat oxidation in humans proceeds by the reductase-dependent pathway. The patient was a black female, presenting in the neonatal period with persistent hypotonia. Biochemical studies revealed hyperlysinemia, hypocarnitinemia, normal organic acid profile, and an unusual acylcarnitine species in both urine and blood. The new metabolite was positively identified by mass spectrometry as 2-trans,4-cis-decadienoylcarnitine, derived from incomplete oxidation of linoleic acid. In spite of dietary therapy, the patient died of respiratory acidosis at four months of age. Samples of liver and muscle from the autopsy were assayed for 2,4-dienoyl-coenzyme A reductase activity. Using the substrate 2-trans,4-cis-decadienoylcoenzyme A, the reductase activity was 40% of the control value in liver and only 17% of that found in normal muscle. It is suggested that unsaturated substrates should be used for in vitro testing to cover the full range of potential beta-oxidation defects and that acylcarnitine species identification be used for in vivo detection of this disorder.

Authors

C R Roe, D S Millington, D L Norwood, N Kodo, H Sprecher, B S Mohammed, M Nada, H Schulz, R McVie

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 283 93
PDF 83 17
Scanned page 228 1
Citation downloads 103 0
Totals 697 111
Total Views 808
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts