Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114623

Phospholamban-mediated stimulation of Ca2+ uptake in sarcoplasmic reticulum from normal and failing hearts.

M A Movsesian, J Colyer, J H Wang, and J Krall

Cardiology Division, University of Utah Medical Center, Salt Lake City 84132.

Find articles by Movsesian, M. in: PubMed | Google Scholar

Cardiology Division, University of Utah Medical Center, Salt Lake City 84132.

Find articles by Colyer, J. in: PubMed | Google Scholar

Cardiology Division, University of Utah Medical Center, Salt Lake City 84132.

Find articles by Wang, J. in: PubMed | Google Scholar

Cardiology Division, University of Utah Medical Center, Salt Lake City 84132.

Find articles by Krall, J. in: PubMed | Google Scholar

Published May 1, 1990 - More info

Published in Volume 85, Issue 5 on May 1, 1990
J Clin Invest. 1990;85(5):1698–1702. https://doi.org/10.1172/JCI114623.
© 1990 The American Society for Clinical Investigation
Published May 1, 1990 - Version history
View PDF
Abstract

Studies in animal models have suggested that alterations affecting phospholamban-mediated stimulation of Ca2+ uptake by sarcoplasmic reticulum are involved in the pathophysiology of heart disease. A monoclonal antibody that binds to phospholamban and stimulates Ca2+ uptake was used to characterize phospholamban-mediated effects in human cardiac sarcoplasmic reticulum and to compare these effects in tissue from normal and failing hearts. Stimulation of Ca2+ uptake by anti-phospholamban monoclonal antibody simulated the effect of phosphorylation of phospholamban by cAMP-dependent protein kinase. Binding of anti-phospholamban antibody reduced the K0.5 of the Ca2(+)-transporting ATPase from 0.53 microM [( Ca2+]) to 0.29 microM [( Ca2+]), without affecting Vmax or nHill. At 0.2 microM Ca2+, stimulation was 1.93-fold in sarcoplasmic reticulum prepared from normal human left ventricular myocardium and 1.94-fold in sarcoplasmic reticulum prepared from the left ventricular myocardium of patients with heart failure resulting from idiopathic dilated cardiomyopathy. Stimulation of Ca2+ uptake in canine cardiac sarcoplasmic reticulum under identical conditions was 1.89-fold. Phospholamban-mediated stimulation of Ca2+ uptake in human cardiac sarcoplasmic reticulum is thus comparable in magnitude to that observed in other species and results from an increase in the apparent affinity of the Ca2(+)-transporting ATPase for Ca2+. The pathogenesis of heart failure in idiopathic dilated cardiomyopathy does not, however, appear to involve intrinsic alterations of this mechanism.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1698
page 1698
icon of scanned page 1699
page 1699
icon of scanned page 1700
page 1700
icon of scanned page 1701
page 1701
icon of scanned page 1702
page 1702
Version history
  • Version 1 (May 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts