Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114619

Tumor hypoglycemia: relationship to high molecular weight insulin-like growth factor-II.

E T Shapiro, G I Bell, K S Polonsky, A H Rubenstein, M C Kew, and H S Tager

Pritzker School of Medicine, Department of Medicine, University of Chicago, Illinois 60637.

Find articles by Shapiro, E. in: PubMed | Google Scholar

Pritzker School of Medicine, Department of Medicine, University of Chicago, Illinois 60637.

Find articles by Bell, G. in: PubMed | Google Scholar

Pritzker School of Medicine, Department of Medicine, University of Chicago, Illinois 60637.

Find articles by Polonsky, K. in: PubMed | Google Scholar

Pritzker School of Medicine, Department of Medicine, University of Chicago, Illinois 60637.

Find articles by Rubenstein, A. in: PubMed | Google Scholar

Pritzker School of Medicine, Department of Medicine, University of Chicago, Illinois 60637.

Find articles by Kew, M. in: PubMed | Google Scholar

Pritzker School of Medicine, Department of Medicine, University of Chicago, Illinois 60637.

Find articles by Tager, H. in: PubMed | Google Scholar

Published May 1, 1990 - More info

Published in Volume 85, Issue 5 on May 1, 1990
J Clin Invest. 1990;85(5):1672–1679. https://doi.org/10.1172/JCI114619.
© 1990 The American Society for Clinical Investigation
Published May 1, 1990 - Version history
View PDF
Abstract

The mechanism of tumor-associated hypoglycemia was examined in 11 patients with hepatocellular carcinoma, 6 of whom presented with severe hypoglycemia and 5 in whom plasma glucose was persistently normal. Serum insulin levels in the hypoglycemic patients were low. Although total serum insulin-like growth factor II (IGF-II) levels in both groups of tumor patients were lower than normal, tumor tissue from hypoglycemic patients contained levels of IGF-II mRNA that were 10-20-fold higher than those present in normal liver. IGF-II immunoreactivity consisted in all cases of a mixture of both higher molecular weight forms and material having the character of IGF-II itself. The former comprised a greater proportion of total IGF-II, in patients with hypoglycemia. Studies to characterize the interactions of IGF-II with serum proteins showed that (a) the radiolabeled peptide bound to an approximately 40,000-D protein in sera from both hypoglycemic patients and normal subjects, (b) sera from hypoglycemic patients and normal subjects had similar capacity to bind the radiolabeled peptide, and (c) the apparent affinities of serum binding proteins for IGF-II were the same for both hypoglycemic patients and normal subjects. Whereas, acid extracted, tumor-derived IGF-II immunoreactive peptides with low or intermediate molecular weights bound to serum proteins in a manner indistinguishable from that of IGF-II itself, the highest molecular weight IGF-II immunoreactive peptide exhibited negligible ability to compete for radiolabeled ligand binding to serum proteins. The low affinity of serum binding proteins for this component suggests that high molecular weight IGF-II immunoreactivity might circulate free and be available for interaction with cell-surface receptors.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1672
page 1672
icon of scanned page 1673
page 1673
icon of scanned page 1674
page 1674
icon of scanned page 1675
page 1675
icon of scanned page 1676
page 1676
icon of scanned page 1677
page 1677
icon of scanned page 1678
page 1678
icon of scanned page 1679
page 1679
Version history
  • Version 1 (May 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts