Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114613

Effect of adenosine1-receptor blockade on renin release from rabbit isolated perfused juxtaglomerular apparatus.

H Weihprecht, J N Lorenz, J Schnermann, O Skøtt, and J P Briggs

Department of Internal Medicine, University of Michigan, Ann Arbor 48109.

Find articles by Weihprecht, H. in: PubMed | Google Scholar

Department of Internal Medicine, University of Michigan, Ann Arbor 48109.

Find articles by Lorenz, J. in: PubMed | Google Scholar

Department of Internal Medicine, University of Michigan, Ann Arbor 48109.

Find articles by Schnermann, J. in: PubMed | Google Scholar

Department of Internal Medicine, University of Michigan, Ann Arbor 48109.

Find articles by Skøtt, O. in: PubMed | Google Scholar

Department of Internal Medicine, University of Michigan, Ann Arbor 48109.

Find articles by Briggs, J. in: PubMed | Google Scholar

Published May 1, 1990 - More info

Published in Volume 85, Issue 5 on May 1, 1990
J Clin Invest. 1990;85(5):1622–1628. https://doi.org/10.1172/JCI114613.
© 1990 The American Society for Clinical Investigation
Published May 1, 1990 - Version history
View PDF
Abstract

Adenosine has been proposed to act within the juxtaglomerular apparatus (JGA) as a mediator of the inhibition of renin secretion produced by a high NaCl concentration at the macula densa. To test this hypothesis, we studied the effects of the adenosine1 (A1)-receptor blocker 8-cyclopentyl-1,3-dipropylxanthine (CPX) on renin release from single isolated rabbit JGAs with macula densa perfused. The A1-receptor agonist, N6-cyclohexyladenosine (CHA), applied in the bathing solution at 10(-7) M, was found to inhibit renin secretion, an effect that was completely blocked by adding CPX (10(-5) M) to the bath. Applied to the lumen, 10(-5) M CPX produced a modest stimulation of renin secretion rates suppressed by a high NaCl concentration at the macula densa (P less than 0.05). The effect of changing luminal NaCl concentration on renin secretion rate was examined in the presence of CPX (10(-7) and 10(-5) M) in the bathing solution and in vehicle control experiments. The control response to increasing luminal NaCl concentration was a marked suppression of renin secretion, that was maintained as long as luminal NaCl concentration was high and was promptly reversible when concentration was lowered. CPX did not alter renin release when luminal NaCl was low, but diminished the reduction caused by high NaCl (P less than 0.01). It is concluded that A1-receptors are located within the JGA, and that A1-receptor activation inhibits renin release. A high NaCl concentration at the macula densa appears to influence A1-receptor activation, but a low NaCl concentration does not. The findings support participation of adenosine in macula densa control of renin secretion.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1622
page 1622
icon of scanned page 1623
page 1623
icon of scanned page 1624
page 1624
icon of scanned page 1625
page 1625
icon of scanned page 1626
page 1626
icon of scanned page 1627
page 1627
icon of scanned page 1628
page 1628
Version history
  • Version 1 (May 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts