Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114599

A single nucleotide substitution introduces a premature termination codon into the androgen receptor gene of a patient with receptor-negative androgen resistance.

M Marcelli, W D Tilley, C M Wilson, J D Wilson, J E Griffin, and M J McPhaul

Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8857.

Find articles by Marcelli, M. in: PubMed | Google Scholar

Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8857.

Find articles by Tilley, W. in: PubMed | Google Scholar

Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8857.

Find articles by Wilson, C. in: PubMed | Google Scholar

Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8857.

Find articles by Wilson, J. in: PubMed | Google Scholar

Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8857.

Find articles by Griffin, J. in: PubMed | Google Scholar

Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8857.

Find articles by McPhaul, M. in: PubMed | Google Scholar

Published May 1, 1990 - More info

Published in Volume 85, Issue 5 on May 1, 1990
J Clin Invest. 1990;85(5):1522–1528. https://doi.org/10.1172/JCI114599.
© 1990 The American Society for Clinical Investigation
Published May 1, 1990 - Version history
View PDF
Abstract

Mutations of the androgen receptor that impair the action of 5 alpha-dihydrotestosterone and testosterone result in abnormal male sexual development. The definition of the organization of the androgen receptor gene has permitted us to examine its structure in nine patients with androgen resistance that exhibit absent 5 alpha-dihydrotestosterone binding in cultured fibroblasts (receptor-negative androgen resistance). Using labeled probes specific for each individual coding exon, we find no gross rearrangements, insertions, or deletions of the androgen receptor gene in these patients. To analyze the genetic defect in these receptor-negative patients, we used the polymerase chain reaction to amplify each individual exon of the androgen receptor gene in nine affected patients. In all patients, the size of each amplified exon segment was identical to that in normal individuals. The nucleotide sequence of the entire coding region of the androgen receptor was determined in one of these patients. A single nucleotide substitution was identified that results in a premature termination codon in exon 6 at amino acid 794. S1 nuclease protection assays demonstrated that normal levels of androgen receptor mRNA are present in skin fibroblasts of this patient. Transfection of a mutated androgen receptor cDNA containing a termination codon at position 794 into eukaryotic cells resulted in formation of a normal amount of receptor protein, as indicated by immunoblotting, but the expressed protein does not bind 5 alpha-dihydrotestosterone. These findings suggest that the presence of a premature termination codon at amino acid 794 of the androgen receptor is the cause of androgen resistance in this patient.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1522
page 1522
icon of scanned page 1523
page 1523
icon of scanned page 1524
page 1524
icon of scanned page 1525
page 1525
icon of scanned page 1526
page 1526
icon of scanned page 1527
page 1527
icon of scanned page 1528
page 1528
Version history
  • Version 1 (May 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts