Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114518

Azurocidin and a homologous serine protease from neutrophils. Differential antimicrobial and proteolytic properties.

D Campanelli, P A Detmers, C F Nathan, and J E Gabay

Beatrice and Samuel A. Seaver Laboratory, Department of Medicine, Cornell University Medical College, New York, NY 10021.

Find articles by Campanelli, D. in: PubMed | Google Scholar

Beatrice and Samuel A. Seaver Laboratory, Department of Medicine, Cornell University Medical College, New York, NY 10021.

Find articles by Detmers, P. in: PubMed | Google Scholar

Beatrice and Samuel A. Seaver Laboratory, Department of Medicine, Cornell University Medical College, New York, NY 10021.

Find articles by Nathan, C. in: PubMed | Google Scholar

Beatrice and Samuel A. Seaver Laboratory, Department of Medicine, Cornell University Medical College, New York, NY 10021.

Find articles by Gabay, J. in: PubMed | Google Scholar

Published March 1, 1990 - More info

Published in Volume 85, Issue 3 on March 1, 1990
J Clin Invest. 1990;85(3):904–915. https://doi.org/10.1172/JCI114518.
© 1990 The American Society for Clinical Investigation
Published March 1, 1990 - Version history
View PDF
Abstract

Two 29-kD polypeptides, azurocidin and p29b, were purified to homogeneity from human neutrophils by acid extraction of azurophil granule membrane-associated material followed by gel filtration and reverse-phase chromatography. Azurocidin and p29b share NH2-terminal sequence homology with each other as well as with elastase, cathepsin G, and other serine proteases. p29b bound [3H]diisopropyl fluorophosphate and hydrolyzed elastin, casein, and hemoglobin. A peptide substrate for p29b could not be identified. Azurocidin neither bound [3H]diisopropyl fluorophosphate nor hydrolyzed any of the proteins, peptides, or esters tested. In microbicidal assays, purified azurocidin was comparable to p29b in activity against Escherichia coli, Streptococcus faecalis, and Candida albicans. The antimicrobial activity of azurocidin was enhanced under mildly acidic conditions, but was inhibited in a dose-dependent manner by NaCl, CaCl2, or serum. Immunoblot analysis with monospecific antibodies localized greater than 90% of the azurocidin and greater than 75% of the p29b to azurophil granule-rich fractions of PMN lysates. Immunoelectron microscopy confirmed the localization of azurocidin to the azurophil granules. Azurocidin associated with the azurophil granule membrane, but did not appear to be an integral membrane protein. Thus, azurocidin and p29b are members of a family of serine protease homologs stored in azurophil granules and may play a role in inflammatory and antimicrobial processes involving PMN.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 904
page 904
icon of scanned page 905
page 905
icon of scanned page 906
page 906
icon of scanned page 907
page 907
icon of scanned page 908
page 908
icon of scanned page 909
page 909
icon of scanned page 910
page 910
icon of scanned page 911
page 911
icon of scanned page 912
page 912
icon of scanned page 913
page 913
icon of scanned page 914
page 914
icon of scanned page 915
page 915
Version history
  • Version 1 (March 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts