Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114496

Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation.

R A Clark, B D Volpp, K G Leidal, and W M Nauseef

Department of Medicine, University of Iowa College of Medicine, Iowa City.

Find articles by Clark, R. in: PubMed | Google Scholar

Department of Medicine, University of Iowa College of Medicine, Iowa City.

Find articles by Volpp, B. in: PubMed | Google Scholar

Department of Medicine, University of Iowa College of Medicine, Iowa City.

Find articles by Leidal, K. in: PubMed | Google Scholar

Department of Medicine, University of Iowa College of Medicine, Iowa City.

Find articles by Nauseef, W. in: PubMed | Google Scholar

Published March 1, 1990 - More info

Published in Volume 85, Issue 3 on March 1, 1990
J Clin Invest. 1990;85(3):714–721. https://doi.org/10.1172/JCI114496.
© 1990 The American Society for Clinical Investigation
Published March 1, 1990 - Version history
View PDF
Abstract

The superoxide-forming respiratory burst oxidase of human neutrophils is composed of membrane-associated catalytic components and cytosolic constituents required for oxidase activation. This study concerns the hypothesis that cytosolic oxidase components translocate to a membrane fraction when neutrophils are stimulated and the oxidase is activated. A polyclonal antiserum that recognizes two discrete cytosolic oxidase components of 47 and 67 kD was used to probe transfer blots of electrophoresed membrane and cytosol fractions of resting and stimulated neutrophils. In contrast to their strictly cytosolic localization in unstimulated cells, both proteins were detected in membrane fractions of neutrophils activated by phorbol esters and other stimuli. This translocation event was a function of stimulus concentration as well as time and temperature of exposure to the stimulus. It was inhibited by concentrations of N-ethylmaleimide that blocked superoxide formation but was unaffected by 2-deoxyglucose. There was a correlation between translocation of the cytosolic proteins and activation of the oxidase as determined by superoxide formation. Quantitative analyses suggested that approximately 10% of total cellular p47 and p67 became membrane-associated during phorbol ester activation of the oxidase. Analysis of Percoll density gradient fractions indicated that the target membrane for translocation of both proteins was the plasma membrane rather than membranes of either specific or azurophilic granules. In the cell-free oxidase system arachidonate-dependent but membrane-independent precipitation of the cytosolic oxidase proteins was demonstrated. The data show that activation of the respiratory burst oxidase in stimulated human neutrophils is closely associated with translocation of the 47- and 67-kD cytosolic oxidase components to the plasma membrane. We suggest that this translocation event is important in oxidase activation.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 714
page 714
icon of scanned page 715
page 715
icon of scanned page 716
page 716
icon of scanned page 717
page 717
icon of scanned page 718
page 718
icon of scanned page 719
page 719
icon of scanned page 720
page 720
icon of scanned page 721
page 721
Version history
  • Version 1 (March 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts