Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114495

Relationship between myocardial metabolites and contractile abnormalities during graded regional ischemia. Phosphorus-31 nuclear magnetic resonance studies of porcine myocardium in vivo.

S Schaefer, G G Schwartz, J R Gober, A K Wong, S A Camacho, B Massie, and M W Weiner

Magnetic Resonance Unit, Veterans Administration Medical Center, San Francisco, California 94121.

Find articles by Schaefer, S. in: PubMed | Google Scholar

Magnetic Resonance Unit, Veterans Administration Medical Center, San Francisco, California 94121.

Find articles by Schwartz, G. in: PubMed | Google Scholar

Magnetic Resonance Unit, Veterans Administration Medical Center, San Francisco, California 94121.

Find articles by Gober, J. in: PubMed | Google Scholar

Magnetic Resonance Unit, Veterans Administration Medical Center, San Francisco, California 94121.

Find articles by Wong, A. in: PubMed | Google Scholar

Magnetic Resonance Unit, Veterans Administration Medical Center, San Francisco, California 94121.

Find articles by Camacho, S. in: PubMed | Google Scholar

Magnetic Resonance Unit, Veterans Administration Medical Center, San Francisco, California 94121.

Find articles by Massie, B. in: PubMed | Google Scholar

Magnetic Resonance Unit, Veterans Administration Medical Center, San Francisco, California 94121.

Find articles by Weiner, M. in: PubMed | Google Scholar

Published March 1, 1990 - More info

Published in Volume 85, Issue 3 on March 1, 1990
J Clin Invest. 1990;85(3):706–713. https://doi.org/10.1172/JCI114495.
© 1990 The American Society for Clinical Investigation
Published March 1, 1990 - Version history
View PDF
Abstract

The mechanisms responsible for changes in myocardial contractility during regional ischemia are unknown. Since changes in high-energy phosphates during ischemia are sensitive to reductions in myocardial blood flow, it was hypothesized that myocardial function under steady-state conditions of graded regional ischemia is closely related to changes in myocardial high-energy phosphates. Therefore, phosphorus-31 nuclear magnetic resonance spectroscopy was employed in an in vivo porcine model of graded coronary stenosis. Simultaneous measurements of regional subendocardial blood flow, high-energy phosphates, pH, and myocardial segment shortening were made during various degrees of regional ischemia in which subendocardial blood flow was reduced by 16-94%. During mild reductions in myocardial blood flow (subendocardial blood flow = 83% of nonischemic myocardium), only the ratio of phosphocreatine to inorganic phosphate (PCr/Pi), Pi, and [H+] were significantly changed from control. PCr, ATP, and PCr/ATP were not significantly reduced from control with mild reductions in blood flow. Changes in myocardial segment shortening were most closely associated with changes in PCr/Pi (r = 0.94). Pi and [H+] were negatively correlated with segment shortening (r = -0.64 and -0.58, respectively) and increased over twofold when blood flow was reduced by 62%. Thus, these data demonstrate that PCr/Pi is sensitive to reductions in myocardial blood flow and closely correlates with changes in myocardial function. These data are also consistent with a role for Pi or H+ as inhibitors of myocardial contractility during ischemia.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 706
page 706
icon of scanned page 707
page 707
icon of scanned page 708
page 708
icon of scanned page 709
page 709
icon of scanned page 710
page 710
icon of scanned page 711
page 711
icon of scanned page 712
page 712
icon of scanned page 713
page 713
Version history
  • Version 1 (March 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts