Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114474

Mechanisms of intranephronal proteinaceous cast formation by low molecular weight proteins.

P W Sanders, B B Booker, J B Bishop, and H C Cheung

Department of Medicine, University of Alabama, Birmingham 35294.

Find articles by Sanders, P. in: PubMed | Google Scholar

Department of Medicine, University of Alabama, Birmingham 35294.

Find articles by Booker, B. in: PubMed | Google Scholar

Department of Medicine, University of Alabama, Birmingham 35294.

Find articles by Bishop, J. in: PubMed | Google Scholar

Department of Medicine, University of Alabama, Birmingham 35294.

Find articles by Cheung, H. in: PubMed | Google Scholar

Published February 1, 1990 - More info

Published in Volume 85, Issue 2 on February 1, 1990
J Clin Invest. 1990;85(2):570–576. https://doi.org/10.1172/JCI114474.
© 1990 The American Society for Clinical Investigation
Published February 1, 1990 - Version history
View PDF
Abstract

Proteinaceous cast formation in the distal nephron of the kidney from low molecular weight proteinuria is a significant, but poorly characterized, cause of renal failure. To study this phenomenon, we: (a) microperfused the loop segment (LS) of rats in vivo with artificial tubule fluid (ATF) containing four different low molecular weight proteins, 0.01-50 mg/ml, to detect alterations in LS function, and (b) examined the interaction between several proteins and Tamm-Horsfall glycoprotein (THP) in vitro with turbidity and dynamic light-scattering measurements. Perfusion of the LS for less than 2 min with cast-forming proteins (Bence Jones protein [BJP3] and myoglobin) decreased chloride absorption and elevated early distal tubule fluid (ED) [Cl-], compared with results obtained with control perfusions that used ATF alone. BJP3 decreased chloride absorption in a concentration-dependent fashion. Perfusion with non-cast-forming proteins (albumin and BJP1) enhanced chloride absorption and decreased ED [Cl-]. In vitro, proteins that had isoelectric points (pI) greater than 5.1 aggregated with THP. Aggregation was enhanced with increasing [NaCl] or [CaCl2]. Albumin (pI 4.8) and beta-lactoglobulin (pI 5.1) did not coprecipitate. The molecular size of THP alone increased when [NaCl] greater than 80 mM. Thus, cast-forming proteins aggregated with THP in vitro and caused in vivo LS dysfunction, which elevated ED [Cl-], facilitating aggregation. In contrast, non-cast-forming proteins either did not interact with THP or lowered ED [Cl-], which did not provide an environment for aggregation. Altered LS function and interaction of some proteins with THP were related to different physicochemical properties of the proteins and independently contributed to the formation of proteinaceous casts in the kidney.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 570
page 570
icon of scanned page 571
page 571
icon of scanned page 572
page 572
icon of scanned page 573
page 573
icon of scanned page 574
page 574
icon of scanned page 575
page 575
icon of scanned page 576
page 576
Version history
  • Version 1 (February 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts