Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Amendment history:
  • Correction (June 1990)

Research Article Free access | 10.1172/JCI114473

Regulation of macrophage function by interferon-gamma. Somatic cell genetic approaches in murine macrophage cell lines to mechanisms of growth inhibition, the oxidative burst, and expression of the chronic granulomatous disease gene.

M Goldberg, L S Belkowski, and B R Bloom

Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Goldberg, M. in: PubMed | Google Scholar

Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Belkowski, L. in: PubMed | Google Scholar

Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461.

Find articles by Bloom, B. in: PubMed | Google Scholar

Published February 1, 1990 - More info

Published in Volume 85, Issue 2 on February 1, 1990
J Clin Invest. 1990;85(2):563–569. https://doi.org/10.1172/JCI114473.
© 1990 The American Society for Clinical Investigation
Published February 1, 1990 - Version history
View PDF
Abstract

The importance of oxidative cytocidal mechanisms of phagocytic cells in immune protection against microbial pathogens is uniquely revealed by chronic granulomatous disease (CGD), a genetic deficiency disease of man. This cytocidal response in mononuclear phagocytes is principally regulated by IFN-gamma. A somatic cell genetic approach was taken to select oxidative variants from a cloned murine macrophage cell line, J774.16, which formally permitted us to dissociate three regulatory effects of IFN-gamma on these cells: the antiproliferative effect, the antiviral effect, and production of superoxide anion. Half of the variants defective in O-2 production after phorbol myristate acetate stimulation were also resistant to the antiproliferative effects of IFN-gamma. This result suggests that IFN-gamma-induced growth inhibition and production of cytocidal oxygen intermediates are mediated via a common pathway. The somatic cell genetic approach has allowed us to develop in vitro macrophage models for several forms of CGD. One variant characterized in detail, D9, was unable to produce superoxide after stimulation by phorbol esters. At the molecular level, Northern blot analysis revealed that the mRNA encoding the large subunit of the putative CGD gene product, cytochrome b558, was absent in this variant. Another class of variants constitutively unable to produce O-2 or the cytochrome b558 mRNA could be induced to do so by IFN-gamma. These somatic mutants may be useful models in clarifying the role of the CGD gene product and its regulation in the production of cytocidal oxygen intermediates.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 563
page 563
icon of scanned page 564
page 564
icon of scanned page 565
page 565
icon of scanned page 566
page 566
icon of scanned page 567
page 567
icon of scanned page 568
page 568
icon of scanned page 569
page 569
Version history
  • Version 1 (February 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts