Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Angiotensin converting enzyme inhibition ameliorates glomerular filtration of macromolecules and water and lessens glomerular injury in the rat.
A Remuzzi, … , T Bertani, G Remuzzi
A Remuzzi, … , T Bertani, G Remuzzi
Published February 1, 1990
Citation Information: J Clin Invest. 1990;85(2):541-549. https://doi.org/10.1172/JCI114470.
View: Text | PDF
Research Article

Angiotensin converting enzyme inhibition ameliorates glomerular filtration of macromolecules and water and lessens glomerular injury in the rat.

  • Text
  • PDF
Abstract

The effect of enalapril on glomerular hemodynamics and permselectivity and on subsequent sclerosis was studied in male MWF/Ztm rats which spontaneously develop proteinuria and glomerular structural damage. Untreated group 1 and enalapril-treated group 2 (50 mg/liter, in the drinking water) underwent micropuncture studies after 2 mo of observation. After the same period of treatment, group 3 (untreated) and group 4 (enalapril treated) were used for determination of whole-kidney function and neutral dextran clearances. Group 5 (untreated) and group 6 (enalapril treated) were followed for an additional 4 mo and used for kidney function and morphological studies. Enalapril significantly lowered systolic blood pressure, which was elevated in untreated groups, and significantly reduced proteinuria (295 +/- 64 vs. 128 +/- 24 mg/24 h by the end of the study). Despite the reduced renal perfusion pressure, whole-kidney glomerular filtration rate was higher in enalapril-treated than in untreated rats (0.96 +/- 0.14 vs. 0.81 +/- 0.10 ml/min, P less than 0.05) as was the single nephron glomerular filtration rate (54 +/- 7.1 vs. 46 +/- 4.0 nl/min, P less than 0.05). The single glomerular afferent plasma flow was comparable in both groups. Enalapril reduced mean glomerular capillary hydraulic pressure from the normal value of 51 +/- 1 mmHg (untreated rats) to a value lower than normal (44 +/- 1 mmHg, P less than 0.001). These hemodynamic changes were associated with a significant reduction in afferent (approximately 23%) and efferent (approximately 26%) arteriolar resistance. The mean ultrafiltration coefficient was two times higher in the enalapril (0.126 +/- 0.027 nl/s per mmHg) than in the untreated group (0.061 +/- 0.023 nl/s per mmHg). The clearance of dextran macromolecules relative to that of inulin was significantly reduced for all molecular sizes studied (26-64 A) in enalapril-treated vs. untreated rats. Theoretical analysis of dextran fractional clearances using a heteroporous model of neutral solute transport across the glomerular capillary wall indicated that enalapril affected glomerular membrane size selective properties, reducing uniformly the radius of hypothetical membrane pores. Enalapril treatment also significantly limited (P less than 0.01) the development of glomerular structural lesions (mean percentage of sclerotic glomeruli was 4.2 +/- 3.5% [treated] vs. 28 +/- 15% [untreated] rats at the end of the study) as well as tubulo-interstitial damage. These results suggest that the protective effect of enalapril on the development of proteinuria and glomerular sclerosis in this model is due to its property of ameliorating size selectivity and hydraulic permeability of the glomerular capillaries.

Authors

A Remuzzi, S Puntorieri, C Battaglia, T Bertani, G Remuzzi

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 154 9
PDF 44 18
Scanned page 282 5
Citation downloads 45 0
Totals 525 32
Total Views 557
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts