Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114460

Adrenergic control of circulating lymphocyte subpopulations. Effects of congestive heart failure, dynamic exercise, and terbutaline treatment.

A S Maisel, K U Knowlton, P Fowler, A Rearden, M G Ziegler, H J Motulsky, P A Insel, and M C Michel

Department of Medicine, University of California, San Diego 92037.

Find articles by Maisel, A. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92037.

Find articles by Knowlton, K. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92037.

Find articles by Fowler, P. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92037.

Find articles by Rearden, A. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92037.

Find articles by Ziegler, M. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92037.

Find articles by Motulsky, H. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92037.

Find articles by Insel, P. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92037.

Find articles by Michel, M. in: JCI | PubMed | Google Scholar

Published February 1, 1990 - More info

Published in Volume 85, Issue 2 on February 1, 1990
J Clin Invest. 1990;85(2):462–467. https://doi.org/10.1172/JCI114460.
© 1990 The American Society for Clinical Investigation
Published February 1, 1990 - Version history
View PDF
Abstract

The current studies were undertaken to explore the relationship between enhanced sympathetic nervous activity and lymphocyte subset distribution in three settings: congestive heart failure, dynamic exercise, and beta-adrenergic agonist treatment. We compared the number and subset distribution of circulating lymphocytes in 36 patients with congestive heart failure and 31 age-matched control subjects. The number of circulating lymphocytes was lower in heart failure than in control. This was due to a reduction in Tsuppressor/cytotoxic and natural killer cells without significant alteration of Thelper cells. The extent of the alteration was similar in patients with idiopathic and ischemic heart failure, but the reduction was more pronounced in patients with New York Heart Association class III-IV than in class I-II. The plasma catecholamine elevation in heart failure was also independent of etiology but more pronounced in the more severely ill patients. We also assessed lymphocyte subsets after acute stimulation of sympathetic activity by dynamic exercise and after treatment with the beta-adrenergic agonist terbutaline. Dynamic exercise until exhaustion increased the number of circulating lymphocytes in healthy controls and heart failure patients in a subset-selective manner. By contrast, a 7-d treatment with terbutaline caused a reduction in the circulating number of lymphocytes in some subsets that was identical to that seen in heart failure patients. We conclude that prolonged sympathetic activity reduces the number of circulating lymphocytes by a beta-adrenergic mechanism. Such alterations might be involved in the pathophysiology of heart failure and other disease states involving increased activity of the sympathetic nervous system.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 462
page 462
icon of scanned page 463
page 463
icon of scanned page 464
page 464
icon of scanned page 465
page 465
icon of scanned page 466
page 466
icon of scanned page 467
page 467
Version history
  • Version 1 (February 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts