Cholesteryl ester transfer activity is increased in plasma of cholesterol-fed rabbits. To investigate the mechanisms leading to changes in activity, we measured cholesteryl ester transfer protein (CETP) mass by RIA and CETP mRNA abundance by Northern and slot blot analysis using a human CETP cDNA probe in control (n = 8) and cholesterol-fed rabbits (n = 10). Cholesterol feeding (chow plus 0.5% cholesterol, 10% corn oil) for 30 d increased CETP mass in plasma 3.2-fold in the cholesterol-fed rabbits (12.45 +/- 0.82 micrograms/ml) compared with controls (3.86 +/- 0.38 micrograms/ml). In the hypercholesterolemic rabbit, liver CETP mRNA levels were increased 2.8 times control mRNA levels. Actin, apo E, lecithin-cholesterol acyltransferase, and albumin mRNA abundances were unchanged. In contrast to the widespread tissue distribution in humans, CETP mRNA was not detected in extrahepatic tissues of either control or cholesterol-fed animals. Using a sensitive RNase protection assay, the increase in liver CETP mRNA was detectable within 3 d of beginning the high cholesterol diet. Thus, in response to the atherogenic diet there is an early increase in liver CETP mRNA, probably causing increased CETP synthesis and secretion, and increased plasma CETP. The results indicate that the CETP gene may be regulated by diet-induced changes in lipid metabolism.
E M Quinet, L B Agellon, P A Kroon, Y L Marcel, Y C Lee, M E Whitlock, A R Tall
Usage data is cumulative from July 2024 through July 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 171 | 2 |
238 | 13 | |
Figure | 0 | 3 |
Scanned page | 283 | 2 |
Citation downloads | 68 | 0 |
Totals | 760 | 20 |
Total Views | 780 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.