Phenotypic heterogeneity in X-linked hypophosphatemic rickets (XLH) is ascribed to variable penetrance of the genetic abnormality. However, studies of hypophosphatemic (Hyp) and gyrorotary (Gy) mice indicate that mutations at different loci along the X chromosome may underlie the genetically transmitted hypophosphatemic disorders. Thus, genetic heterogeneity may be a determinant of the phenotypic variability in XLH. To determine if such variance includes biochemical diversity, we examined whether Gy mice, similar to Hyp mice, exhibit abnormal regulation of renal 25-hydroxyvitamin D (25[OH]D)-1 alpha-hydroxylase. Serum phosphorus in Gy (4.7 +/- 0.3 mg/dl) and phosphate (P)-depleted mice (4.9 +/- 0.4) was significantly less than normal (8.4 +/- 0.5). Consistent with P depletion, the Gy mice exhibited enhanced renal 25(OH)D-1 alpha-hydroxylase activity (9.3 +/- 0.6 fmol/mg kidney per min), similar to that of P-depleted normals (9.1 +/- 1.5), but significantly greater than that of controls (3.1 +/- 0.3). Such normal enzyme responsiveness was confirmed upon PTH stimulation (1 IU/h s.c.), which revealed that Gy mice increased renal 1-hydroxylase (59 +/- 7.7) similarly to normals (65 +/- 7.7) and P-depleted animals (58.4 +/- 7.8). Calcitonin administration also enhanced enzyme function comparably in the animal models. Evidence confirming normally responsive calcitriol production in untreated Gy mice included increased serum 1,25-dihydroxyvitamin D levels, gastrointestinal calcium absorption, and urinary calcium. The normally regulated vitamin D metabolism in Gy mice indicates that biochemically diverse disease may result from mutations in the gene family regulating renal P transport and underlying X-linked hypophosphatemia. We suspect such heterogeneity is due to altered P transport at variable segments of the proximal convoluted tubule.
G A Davidai, T Nesbitt, M K Drezner
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 83 | 4 |
34 | 12 | |
Scanned page | 199 | 3 |
Citation downloads | 46 | 0 |
Totals | 362 | 19 |
Total Views | 381 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.