Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Glomerular hemodynamics in established glycerol-induced acute renal failure in the rat.
A I Wolfert, D E Oken
A I Wolfert, D E Oken
Published December 1, 1989
Citation Information: J Clin Invest. 1989;84(6):1967-1973. https://doi.org/10.1172/JCI114386.
View: Text | PDF
Research Article

Glomerular hemodynamics in established glycerol-induced acute renal failure in the rat.

  • Text
  • PDF
Abstract

The glomerular dynamic correlates of failed filtration were studied in volume replete rats with established glycerol-induced acute renal failure (ARF). Over one-half of all nephrons formed virtually no filtrate, while the single nephron glomerular filtration rate (SNGFR) of fluid-filled nephrons, measured at the glomerulotubular junction to preclude the possibility of covert tubular leakage, averaged one-sixth of control (P less than 0.001). Even that low mean value was elevated by a few nephrons with a near normal SNGFR. Renal failure thus reflected both total filtration failure in the majority of nephrons and massively reduced filtration in most of the remainder. Glomerular capillary pressure (Pg) averaged some 14 mmHg below control (P less than 0.001), whereas the arterial colloid osmotic and Bowman's space pressures were not significantly altered. Renocortical and whole kidney blood flow were also unchanged. Marked internephron functional heterogeneity precluded estimates of the ultrafiltration coefficient. However, the fall in SNGFR correlated well with the markedly depressed Pg and afferent net filtration pressure (delta PnetA, P less than 0.001), which in turn were caused by increased preglomerular resistance and a reciprocal fall in efferent arteriolar resistance. This complex change in intrarenal resistances was largely, if not entirely, responsible for failed filtration in this ARF model.

Authors

A I Wolfert, D E Oken

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 155 2
PDF 36 6
Scanned page 225 2
Citation downloads 53 0
Totals 469 10
Total Views 479
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts