Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Quantitative contribution of systemic vascular autoregulation in acute hypertension in conscious dogs.
P J Metting, K A Kostrzewski, P M Stein, B A Stoos, S L Britton
P J Metting, K A Kostrzewski, P M Stein, B A Stoos, S L Britton
View: Text | PDF
Research Article

Quantitative contribution of systemic vascular autoregulation in acute hypertension in conscious dogs.

  • Text
  • PDF
Abstract

Experiments were performed in nine conscious dogs to quantitate the contribution of systemic vascular autoregulation to the increases in total peripheral resistance (TPR) and mean arterial pressure (MAP) produced by angiotensin II (ANG II), arginine vasopressin (AVP), and norepinephrine (NE). We hypothesized that if autoregulatory vasoconstriction is significant, then the increase in TPR produced by vasoconstrictor infusion will be greater when MAP is controlled at hypertensive values than when the increase in pressure is prevented by controlling MAP at the animal's normotensive value. Each drug was infused at a dose sufficient to increase MAP by 50%. Then, a constant rate of vasoconstrictor infusion was maintained while MAP was controlled at hypertensive or normotensive levels for 15-min periods using a gravity reservoir connected to the left common carotid artery. During AVP infusion, TPR was significantly greater when MAP was controlled at hypertensive than at normotensive values. This autoregulatory-mediated vasoconstriction accounted for approximately three-fourths of the increase in MAP produced by AVP. No significant autoregulatory component was identified for the increases in TPR and MAP produced by ANG II or NE. We conclude that systemic vascular autoregulation is a powerful physiological property that contributes to the hemodynamic response to pressor doses of AVP.

Authors

P J Metting, K A Kostrzewski, P M Stein, B A Stoos, S L Britton

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 149 1
PDF 64 4
Scanned page 244 4
Citation downloads 90 0
Totals 547 9
Total Views 556

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts