Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Coordinate regulation of transforming growth factor beta gene expression and cell proliferation in hamster lungs undergoing bleomycin-induced pulmonary fibrosis.
B Raghow, … , P Irish, A H Kang
B Raghow, … , P Irish, A H Kang
Published December 1, 1989
Citation Information: J Clin Invest. 1989;84(6):1836-1842. https://doi.org/10.1172/JCI114369.
View: Text | PDF
Research Article

Coordinate regulation of transforming growth factor beta gene expression and cell proliferation in hamster lungs undergoing bleomycin-induced pulmonary fibrosis.

  • Text
  • PDF
Abstract

The number of mesenchymal cells, as well as their ability to synthesize extracellular matrix (ECM) components, greatly increase in the interstitium of fibrotic lungs. We have previously shown that the transcription of type I procollagen and fibronectin genes in the lungs is preferentially elevated during the early stages of bleomycin-induced pulmonary fibrosis (Raghow, R., S. Lurie, J. M. Seyer, and A. H. Kang. 1985, J. Clin. Invest. 76:1734-1739. Since a cytokine-like transforming growth factor beta (TGF beta) that is capable of enhancing mesenchymal cell proliferation and ECM synthesis could be potentially involved in this process, we investigated the temporal relationship between the regulation of TGF beta gene transcription and cellular proliferation in the bleomycin-treated hamster lungs. We observed a transient 5-7-fold increase in the accumulation of TGF beta transcripts, a concomitant 3-4-fold elevation in the cellular proliferation, and 8-10-fold stimulation of DNA synthesis in these lungs; all three parameters peaked around day 10 after bleomycin administration. Based on these results, we conclude that regulation of TGF beta gene expression may contribute significantly to the early events that lead to bleomycin-induced pulmonary fibrosis.

Authors

B Raghow, P Irish, A H Kang

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts