The role of hydrophobicity in the attachment of enteropathogens to gastrointestinal mucosa is controversial. In vitro binding of Escherichia coli RDEC-1 to rabbit intestine is dependent on the expression of pili. We examined in vitro adherence of piliated RDEC-1 after altering either the hydrophobicity of the organisms, the hydrophobicity of the substrate for attachment, or the surface tension of the suspending liquid. Hydrophobicity of RDEC-1 was determined using four complementary methods. In each assay piliated RDEC-1 demonstrated relatively more hydrophobic properties compared with both organisms grown to suppress pilus expression and a mutant that cannot express mannose-resistant pili. When piliated RDEC-1 were pretreated with tetramethyl urea to disrupt hydrophobic bonds surface hydrophobicity decreased. Concurrently, bacterial adherence to rabbit ileal microvillus membranes, mucus and mucin was reduced. Binding of piliated organisms to hydrophobic surfaces was significantly higher compared to both nonpiliated bacteria and the adherence of piliated RDEC-1 to relatively hydrophilic surfaces. Addition of propanol reduced the surface tension of the suspending liquid, and decreased adhesion of piliated RDEC-1 to polystyrene by 80%. Conversely, adherence of piliated organisms to a hydrophilic surface increased 12-fold after lowering the surface tension of the suspending liquid. We conclude that hydrophobic properties have a role in mediating in vitro adherence of this E. coli enteric pathogen.
B Drumm, A W Neumann, Z Policova, P M Sherman
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 126 | 2 |
54 | 11 | |
Scanned page | 220 | 1 |
Citation downloads | 45 | 0 |
Totals | 445 | 14 |
Total Views | 459 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.