Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Chloride secretory response of cystic fibrosis human airway epithelia. Preservation of calcium but not protein kinase C- and A-dependent mechanisms.
R C Boucher, … , M R Knowles, H S Earp
R C Boucher, … , M R Knowles, H S Earp
Published November 1, 1989
Citation Information: J Clin Invest. 1989;84(5):1424-1431. https://doi.org/10.1172/JCI114316.
View: Text | PDF
Research Article

Chloride secretory response of cystic fibrosis human airway epithelia. Preservation of calcium but not protein kinase C- and A-dependent mechanisms.

  • Text
  • PDF
Abstract

Because the defect in Cl- secretion exhibited by cystic fibrosis (CF) epithelia reflects regulatory rather than conductive abnormalities of an apical membrane Cl- channel, we investigated the role of different regulatory pathways in the activation of Cl- secretion in freshly excised normal and CF nasal epithelia mounted in Ussing chambers. A beta agonist (isoproterenol [ISO]), a Ca2+ ionophore (A23187), and a phorbol ester (PMA) were all effective Cl- secretagogues in normal human nasal epithelia. Agonist addition studies indicated that ISO and PMA but not A23187 may share a common regulatory pathway. In contrast, only A23187 induced Cl- secretion in CF epithelia. Bradykinin raised cytosolic Ca2+ and induced Cl- secretion in both normal and CF tissues, indicating that receptor gated Ca2+ dependent Cl- secretory mechanisms were preserved in CF. The defective Cl- secretory response in CF epithelia to ISO and PMA did not reflect abnormalities in cAMP-dependent (A) and phospholipid Ca2+-dependent (C) kinase activities. We conclude that (a) a Ca2+-sensitive mechanism for regulating Cl- secretion is maintained in CF airway epithelia, and (b) a regulatory pathway shared by two distinct protein kinases is defective in CF, indicating that the CF genetic lesion is not tightly coupled to a single (e.g., cAMP dependent) regulatory mechanism.

Authors

R C Boucher, E H Cheng, A M Paradiso, M J Stutts, M R Knowles, H S Earp

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts