Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Decay-accelerating factor is expressed on vascular smooth muscle cells in human atherosclerotic lesions.
P S Seifert, G K Hansson
P S Seifert, G K Hansson
Published August 1, 1989
Citation Information: J Clin Invest. 1989;84(2):597-604. https://doi.org/10.1172/JCI114204.
View: Text | PDF
Research Article

Decay-accelerating factor is expressed on vascular smooth muscle cells in human atherosclerotic lesions.

  • Text
  • PDF
Abstract

Decay-accelerating factor (DAF) is a constitutively expressed plasma membrane glycoprotein on blood cells and endothelium that inhibits cell surface C3/C5 convertase formation, thus inhibiting complement activation and protecting cells from lysis by the terminal complement components. Using monoclonal anti-DAF antibodies in conjunction with anti-smooth muscle cell (SMC)-specific myosin antibodies, it was found by immunohistochemistry that vascular SMC in advanced human carotid atherosclerotic lesions express DAF antigen. The percentage of DAF-positive SMC ranged from 20 to 60% between different patient samples and SMC DAF expression was limited to SMC in the lesion proper. Normal arterial wall SMC exhibited no DAF-specific immunostaining. Essentially 100% of passaged cultured vascular SMC derived from normal human uterine artery, or from umbilical vein, expressed DAF as assessed by immunocytochemistry. A 68-kD band was observed on SDS-PAGE autoradiograms of DAF-immunoprecipitated radiolabeled cultured SMC extracts. Sensitization of rabbit erythrocytes with DAF-containing SMC extracts conferred protection against complement-mediated hemolysis in normal human serum and the protective effect could be reversed by treatment with anti-DAF antibodies. We conclude that DAF is induced on vascular SMC during atherogenesis and in culture.

Authors

P S Seifert, G K Hansson

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 131 0
PDF 49 10
Figure 0 2
Scanned page 276 0
Citation downloads 41 0
Totals 497 12
Total Views 509
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts