Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114121

Human decidua is a major source of renin.

K J Shaw, Y S Do, S Kjos, P W Anderson, T Shinagawa, L Dubeau, and W A Hsueh

Department of Medicine, University of Southern California, School of Medicine, Los Angeles 90033.

Find articles by Shaw, K. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Southern California, School of Medicine, Los Angeles 90033.

Find articles by Do, Y. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Southern California, School of Medicine, Los Angeles 90033.

Find articles by Kjos, S. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Southern California, School of Medicine, Los Angeles 90033.

Find articles by Anderson, P. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Southern California, School of Medicine, Los Angeles 90033.

Find articles by Shinagawa, T. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Southern California, School of Medicine, Los Angeles 90033.

Find articles by Dubeau, L. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Southern California, School of Medicine, Los Angeles 90033.

Find articles by Hsueh, W. in: JCI | PubMed | Google Scholar

Published June 1, 1989 - More info

Published in Volume 83, Issue 6 on June 1, 1989
J Clin Invest. 1989;83(6):2085–2092. https://doi.org/10.1172/JCI114121.
© 1989 The American Society for Clinical Investigation
Published June 1, 1989 - Version history
View PDF
Abstract

Plasma prorenin levels are elevated in normal pregnant women. Current evidence suggests renin production by tissues of the uteroplacental unit contribute to this elevation. The purpose of this investigation was to define the source of renin biosynthesis within the human uteroplacental unit and to characterize the renin produced. RNA extraction and Northern blot analysis consistently demonstrated renin mRNA expression in uterine lining both in the pregnant (decidua) and nonpregnant states (endometrium) and in fetal chorion laeve, which is inseparable from the decidua. In contrast, renin mRNA expression was not detected in basal plate and intertwin chorion (which is separate from decidua), amnion, myometrium, or placental villi. The total renin content in decidual homogenates was two- to threefold greater than in endometrial homogenates, and cultured human decidual cells produced significantly more total renin than cultured human endometrial cells, suggesting that pregnancy enhanced renin production by the cells lining the uterus. Immunoblot analysis and [3H]leucine incorporation identified 47,000-mol wt prorenin as the major form of renin produced by cultured human decidual cells. These studies indicate that maternal decidua is the major source of prorenin in the uteroplacental unit.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2085
page 2085
icon of scanned page 2086
page 2086
icon of scanned page 2087
page 2087
icon of scanned page 2088
page 2088
icon of scanned page 2089
page 2089
icon of scanned page 2090
page 2090
icon of scanned page 2091
page 2091
icon of scanned page 2092
page 2092
Version history
  • Version 1 (June 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts