Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114119

Effect of ultrasound on transdermal drug delivery to rats and guinea pigs.

D Levy, J Kost, Y Meshulam, and R Langer

Israel Institute for Biological Research, Ness-Ziona.

Find articles by Levy, D. in: JCI | PubMed | Google Scholar

Israel Institute for Biological Research, Ness-Ziona.

Find articles by Kost, J. in: JCI | PubMed | Google Scholar

Israel Institute for Biological Research, Ness-Ziona.

Find articles by Meshulam, Y. in: JCI | PubMed | Google Scholar

Israel Institute for Biological Research, Ness-Ziona.

Find articles by Langer, R. in: JCI | PubMed | Google Scholar

Published June 1, 1989 - More info

Published in Volume 83, Issue 6 on June 1, 1989
J Clin Invest. 1989;83(6):2074–2078. https://doi.org/10.1172/JCI114119.
© 1989 The American Society for Clinical Investigation
Published June 1, 1989 - Version history
View PDF
Abstract

The effect of therapeutic range ultrasound (1 MHz) on skin permeation of D-mannitol, a highly polar sugar alcohol, inulin, a high molecular weight polysaccharide and physostigmine, a lipophilic anticholinesterase drug was studied in rats and guinea pigs. D-Mannitol and inulin are totally and rapidly excreted, once they have penetrated through the skin into the blood stream, permitting direct in vivo monitoring. For evaluating skin penetration of physostigmine the decrease of whole blood cholinesterase was measured. Ultrasound nearly completely eliminated the lag time usually associated with transdermal delivery of drugs. 3-5 min of ultrasound irradiation (1.5 W/cm2 continuous wave or 3 W/cm2 pulsed wave) increased the transdermal permeation of inulin and mannitol in rats by 5-20-fold within 1-2 h following ultrasound application. Ultrasound treatment also significantly increased (P less than 0.05) the inhibition of cholinesterase during the first hour after application in both physostigmine treated rats and guinea pigs: while in control guinea pigs no significant inhibition of cholinesterase could be detected during the first 2 h after application of physostigmine, the ultrasound treated group showed a 15 +/- 5% (mean +/- SEM) decrease in blood cholinesterase 1 h after ultrasound application. For physostigmine-treated rats the level of cholinesterase inhibition 1 h after ultrasound application was 53 +/- 5% in the ultrasound-treated group and 35 +/- 5% in the controls.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2074
page 2074
icon of scanned page 2075
page 2075
icon of scanned page 2076
page 2076
icon of scanned page 2077
page 2077
icon of scanned page 2078
page 2078
Version history
  • Version 1 (June 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts