Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114103

Atherosclerosis influences the vasomotor response of epicardial coronary arteries to exercise.

J B Gordon, P Ganz, E G Nabel, R D Fish, J Zebede, G H Mudge, R W Alexander, and A P Selwyn

Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Gordon, J. in: JCI | PubMed | Google Scholar

Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Ganz, P. in: JCI | PubMed | Google Scholar

Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Nabel, E. in: JCI | PubMed | Google Scholar

Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Fish, R. in: JCI | PubMed | Google Scholar

Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Zebede, J. in: JCI | PubMed | Google Scholar

Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Mudge, G. in: JCI | PubMed | Google Scholar

Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Alexander, R. in: JCI | PubMed | Google Scholar

Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Selwyn, A. in: JCI | PubMed | Google Scholar

Published June 1, 1989 - More info

Published in Volume 83, Issue 6 on June 1, 1989
J Clin Invest. 1989;83(6):1946–1952. https://doi.org/10.1172/JCI114103.
© 1989 The American Society for Clinical Investigation
Published June 1, 1989 - Version history
View PDF
Abstract

We studied the vasomotion of epicardial coronary arteries during exercise and tested the hypotheses that abnormal vasoconstriction is related to the presence of atherosclerosis and may be related to endothelial dilator dysfunction. During cardiac catheterization quantitative coronary angiography was performed in 21 patients during supine bicycle exercise. 21 of 28 smooth, angiographically normal vessel segments dilated (14.0 +/- 1.8%) during exercise; four smooth segments did not change whereas only three constricted. In contrast, 15 of 16 vessel segments with irregularities constricted in response to exercise (17.0 +/- 0.1%) with only one segment dilating. All 10 stenotic segments constricted to exercise (23 +/- 4%). Six patients also received intracoronary acetylcholine before exercise to test endothelium-dependent dilator function. In five of six patients all nine vessel segments showed the same directional response to acetylcholine and exercise. Three irregular and two stenotic segments constricted with acetylcholine (51 +/- 21%) and exercise (9.0 +/- 0.6%). In contrast, four smooth segments dilated to acetylcholine (19 +/- 6%) and exercise (9 +/- 1%). Both exercise and acetylcholine generally dilated smooth but constricted irregular and stenosed coronary segments. It appears likely that atherosclerosis plays an important role in the abnormal vasomotion of diseased coronary arteries during exercise and the pattern of abnormality suggests impairment of vasodilator function.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1946
page 1946
icon of scanned page 1947
page 1947
icon of scanned page 1948
page 1948
icon of scanned page 1949
page 1949
icon of scanned page 1950
page 1950
icon of scanned page 1951
page 1951
icon of scanned page 1952
page 1952
Version history
  • Version 1 (June 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts