Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114085

Effects of exogenous free radicals on electromechanical function and metabolism in isolated rabbit and guinea pig ventricle. Implications for ischemia and reperfusion injury.

J I Goldhaber, S Ji, S T Lamp, and J N Weiss

Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90024.

Find articles by Goldhaber, J. in: JCI | PubMed | Google Scholar

Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90024.

Find articles by Ji, S. in: JCI | PubMed | Google Scholar

Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90024.

Find articles by Lamp, S. in: JCI | PubMed | Google Scholar

Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90024.

Find articles by Weiss, J. in: JCI | PubMed | Google Scholar

Published June 1, 1989 - More info

Published in Volume 83, Issue 6 on June 1, 1989
J Clin Invest. 1989;83(6):1800–1809. https://doi.org/10.1172/JCI114085.
© 1989 The American Society for Clinical Investigation
Published June 1, 1989 - Version history
View PDF
Abstract

Oxygen-derived free radicals have been implicated in the pathogenesis of cardiac dysfunction during ischemia, postischemic myocardial "stunning," and reperfusion injury. We investigated the effects of oxygen-derived free radicals on cardiac function in intact isolated rabbit hearts and single guinea pig ventricular myocytes. In the intact rabbit ventricle, exposure to free radical-generating systems caused increased cellular K+ efflux, shortening of the action potential duration, changes in tension, and depletion of high energy phosphates similar to ischemia and metabolic inhibition. In patch-clamped single ventricular myocytes, free radical-generating systems activated ATP-sensitive K+ channels, decreased the calcium current, and caused cell shortening by irreversibly inhibiting glycolytic and oxidative metabolism. The results suggest that free radicals generated during ischemia and reperfusion may contribute to electrophysiologic abnormalities and contractile dysfunction by inhibiting glycolysis and oxidative phosphorylation. Inhibition of metabolism by free radicals may be an important factor limiting functional recovery from an ischemic insult after reestablishment of effective blood flow.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1800
page 1800
icon of scanned page 1801
page 1801
icon of scanned page 1802
page 1802
icon of scanned page 1803
page 1803
icon of scanned page 1804
page 1804
icon of scanned page 1805
page 1805
icon of scanned page 1806
page 1806
icon of scanned page 1807
page 1807
icon of scanned page 1808
page 1808
icon of scanned page 1809
page 1809
Version history
  • Version 1 (June 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts